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LLM Evolutionary Tree

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

https://arxiv.org/abs/2304.13712
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Cost of Serving

Understanding the cost of Large Language Models

https://tensorops.ai/post/understanding-the-cost-of-large-language-models-llms


4

The two-stage process
• Prefilling stage

• Process all the input tokens at once

• Compute- intensive 

• Decoding stage

• Generate one token at a time

• Memory-intensive 

• Process these two stage on the same GPU
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Key observations
• Current LLM inference systems often integrate the prefilling and decoding 

stages on a single GPU, which can lead to two types of interference.

• The interference bewteen the prefilling and decoding

• The interference within the prefilling

• CPU resource is more affordable than the expensive GPU resource
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Our goal
• We concentrate on mitigating the interference among the tasks of Large 

Language Model (LLM) services by asynchronously  offloading the 
computational requests during the decoding stages to the CPU.
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Architecture overview
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Challenge 1 How many CPUs are required to match the token generate speed 
on GPUs? 
• The resource allocation between CPU and GPU is influenced by the length of requests:

• 512 tokens: GPU/CPU = 235

• 24k tokens: GPU/CPU = 13.5

• User’s requests come randomly 
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Solution 1 Heterogeneous Resource Match Controller
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Solution 1 Heterogeneous Resource Match Controller
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Challenge 2: How to prevent mutual interference among requests with 
different lengths during prefilling? 

• Within the prefilling stage, the varying 
lengths of requests within the same batch 
can also cause interference. 

• Our preliminary experiment shows that 
compared to using batches with similar 
prompt lengths, forming batches with 
random request lengths leads to a decrease 
in prefilling throughput: from 2.57 
q/s(question per second) to 2.0 q/s.
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Solution 2. Hierarchical GPU Scheduler 
• Core idea:  groups requests of similar lengths into batches 



13

Challenge 3: How to reduce cross-node data access overhead under the 
NUMA architecture? 
• The performance of NUMA can degrade significantly if numerous memory transactions occur remotely from another 

socket. 

• Remote access takes ~30% longer than a local access, while on older hardware, it could take up to 7 times longer. 
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Solution 3: NUMA-Aware Dispatcher 
• The core idea is to couple computation and data placement on the same socket. 

• placing a higher value on the placement of model weights than on that of the KV cache 
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Solution 3: NUMA-Aware Dispatcher
• The GPU prefill a batch of request

• Devide a batch into sevral min-batch

• Select a min-batch of requests and excute them using a pipeline method
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Discussion
• Adapting to Faster CPU 

• Our Setup

• GPU: A100

• CPU: Intel(R) Xeon(R) Gold 6148 CPU 

• Using RL for Resource Management 
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Conclusion
• hLLM is designed to offload the decoding stages to the CPU, effectively 

reducing the interference that can occur between the prefilling and decoding 
phases. 

• hLLM intelligently allocates GPU and CPU resources to optimize the 
distribution of computational capabilities across different devices. 

• hLLM boosts GPU prefill throughput by employing a task scheduling strategy 
that mitigates internal interference.

• hLLM designs a NUMA-aware dispatcher to avoid performance degradation.



Thank you!


