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Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond



https://arxiv.org/abs/2304.13712

Cost of Serving

OpenAl GPT API Pricing Calculator

Wondering about how the OpenAl GPT and other Al model pricing works? Here's a pricing calculator for OpenAl GPT API, Azure OpenAl APIs, Anthropic Claude API.

&) OpenAl gpt-3.5-turbo (&} OpenAl gpt-3.5-turbo-instruct | & OpenAl gpt-4-turbo (beta) | @ OpenAl gpt-4 &) OpenAl gpt-4-32k A\ Anthropic claude-2

A\ Anthropic claude-instant-1

An execution includes both the prompt sent and the response. Language: English

Using GPT for Work
OpenAl price for AL executions ® (Sheets or Excel)

Tokens per execution Words per execution Price for 1 execution ® Including OpenAl cost

With your own API key

10 8 ~$0.00020 ~$43.20 ~$86.40
20 15 ~$0.00040 ~$86.40 ~$172.80
50 38 ~$0.00100 ~$216.00 ~$432.00
100 75 ~$0.00200 ~$432.00 ~$864.00
200 150 ~$0.00400 ~$864.00 ~$1728.00
500 375 ~$0.01000 ~$2160.00 ~$4320.00
1000 750 ~$0.02000 ~$4320.00 ~$8640.00
2000 1500 ~$0.04000 ~$8640.00 ~$17280.00
4000 3000 ~$0.08000 ~$17280.00 ~$34560.00

Understanding the cost of Large Language Models



https://tensorops.ai/post/understanding-the-cost-of-large-language-models-llms

The two-stage process

® Prefilling stage
® Process all the input tokens at once
® Compute- intensive

® Decoding stage

® Generate one token at a time

® Memory-intensive ‘ ‘ |

English computer scientist <EOS>
® Process these two stage on the same GPU —\ | N\ 7 N | 7 N

Decodsr | | { Decoder | || Decoder | || Decocer
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Turing was an English computer scientist




Key observations

® Current LLM inference systems often integrate the prefilling and decoding
stages on a single GPU, which can lead to two types of interference.
® The interference bewteen the prefilling and decoding
® The interference within the prefilling

°

CPU resource is more affordable than the expensive GPU resource




Our goal

® We concentrate on mitigating the interference among the tasks of Large
Language Model (LLM) services by asynchronously offloading the
computational requests during the decoding stages to the CPU.




Architecture overview
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Challenge 1 How many CPUs are required to match the token generate speed
on GPUs?

® The resource allocation between CPU and GPU is influenced by the length of requests:

® 512 tokens: GPU/CPU = 235
® 24k tokens: GPU/CPU = 13.5

® User’s requests come randomly
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Solution 1 Heterogeneous Resource Match Controller

Goals:
Ensure adequate CPU resources for decoding during periods of high workload burstiness .
Preventing excessive CPU idleness during times of low demand

Solution:

A
« AnM/M/ queue : p = — (D
CU

Poisson distribution

A: mean inter-arrival times of batches completing the prefill process by the GPU

—: latency of the decoding process
7

c: the number of CPUs



Solution 1 Heterogeneous Resource Match Controller

Solution:

1 1
. EW)=II,6 X (2)
l—pcu

* Three steps to allocate the CPU:

Profile the GPUs and the workloads to figure out the arrival rate A

Profile the CPUs and the requests requiring decoding to obtain
the mean decoding latency

Set an atcceptable waiting time threshold



Challenge 2: How to prevent mutual interference among requests with
different lengths during prefilling?

® Within the prefilling stage, the varying
lengths of requests within the same batch
can also cause interference.

® OQur preliminary experiment shows that
compared to using batches with similar

prompt lengths, forming batches with S11S2 S3|pad |pad |pad|pad |pad
random request lengths leads to a decrease

in prefilling throughput: from 2.57 ST .-.@@ pad
q/s(question per second) to 2.0 g/s. S1 ....- 88

$1|S2/pad pad |pad|pad|pad|pad
S1IS --@@@




Solution 2. Hierarchical GPU Scheduler

® Coreidea: groups requests of similar lengths into batches
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Challenge 3: How to reduce cross-node data access overhead under the
NUMA architecture?

The performance of NUMA can degrade significantly if numerous memory transactions occur remotely from another
socket.

® Remote access takes ~¥30% longer than a local access, while on older hardware, it could take up to 7 times longer.
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Solution 3: NUMA-Aware Dispatcher

® The core idea is to couple computation and data placement on the same socket.
°

placing a higher value on the placement of model weights than on that of the KV cache

chunk_1 chunk_2

chunk_3

L1 |2 [13 [ L4 _L9 L10]L11
C1_|c2 Cache o cs |c6 Cache
c3 lca Activation > c7 |cs

Weight_chunk 1y

chaChe—{Chunk 1 -

Activation
v
New token <« ©9_1C10 Hcache o C13 1C14 Ilcache
ci1 |c12 <A°t"’at'°" C15 |C16

KVcache_chunk3




Solution 3: NUMA-Aware Dispatcher

® The GPU prefill a batch of request

® Devide a batch into sevral min-batch

® Select a min-batch of requests and excute them using a pipeline method
Time 1 2 3 4 5 6 7 8 9 10 R
batch_1 Prefill_{chunk 1} Prefill_{chunk 3}

Offload_{chunk 1} Offload_{chunk 3}

Minbatch_1 Decode_{chunk 1} Decode_{chunk 3} P U
Minbatch_2 Decode_{chunk 1} Decode_{chunk 3}

Minbatch_3

Decode_{chunk 1} Decode_{chunk 3}

Decode_{chunk 1} Decode_{chunk 3}
Minbatch_4

Minbatch_1 Decode_{chunk 1} Decode_{chunk 3}




Discussion

® Adapting to Faster CPU
® OQur Setup

® GPU: Al100

® CPU: Intel(R) Xeon(R) Gold 6148 CPU

Using RL for Resource Management




Conclusion

hLLM is designed to offload the decoding stages to the CPU, effectively

reducing the interference that can occur between the prefilling and decoding
phases.

hLLM intelligently allocates GPU and CPU resources to optimize the
distribution of computational capabilities across different devices.

hLLM boosts GPU prefill throughput by employing a task scheduling strategy
that mitigates internal interference.

hLLM designs a NUMA-aware dispatcher to avoid performance degradation.




Thank you!




