
hLLM: A Numa-aware Heterogeneous Platform
for High-throughput Large Language Models
Service

Kexin Chu Tzechinh Liu Wei ZhangPengchao Yuan

University of Connecticut

2

LLM Evolutionary Tree

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

https://arxiv.org/abs/2304.13712

3

Cost of Serving

Understanding the cost of Large Language Models

https://tensorops.ai/post/understanding-the-cost-of-large-language-models-llms

4

The two-stage process
• Prefilling stage

• Process all the input tokens at once

• Compute- intensive

• Decoding stage

• Generate one token at a time

• Memory-intensive

• Process these two stage on the same GPU

5

Key observations
• Current LLM inference systems often integrate the prefilling and decoding

stages on a single GPU, which can lead to two types of interference.

• The interference bewteen the prefilling and decoding

• The interference within the prefilling

• CPU resource is more affordable than the expensive GPU resource

6

Our goal
• We concentrate on mitigating the interference among the tasks of Large

Language Model (LLM) services by asynchronously offloading the
computational requests during the decoding stages to the CPU.

7

Architecture overview

8

Challenge 1 How many CPUs are required to match the token generate speed
on GPUs?
• The resource allocation between CPU and GPU is influenced by the length of requests:

• 512 tokens: GPU/CPU = 235

• 24k tokens: GPU/CPU = 13.5

• User’s requests come randomly

9

Solution 1 Heterogeneous Resource Match Controller

10

Solution 1 Heterogeneous Resource Match Controller

11

Challenge 2: How to prevent mutual interference among requests with
different lengths during prefilling?

• Within the prefilling stage, the varying
lengths of requests within the same batch
can also cause interference.

• Our preliminary experiment shows that
compared to using batches with similar
prompt lengths, forming batches with
random request lengths leads to a decrease
in prefilling throughput: from 2.57
q/s(question per second) to 2.0 q/s.

12

Solution 2. Hierarchical GPU Scheduler
• Core idea: groups requests of similar lengths into batches

13

Challenge 3: How to reduce cross-node data access overhead under the
NUMA architecture?
• The performance of NUMA can degrade significantly if numerous memory transactions occur remotely from another

socket.

• Remote access takes ~30% longer than a local access, while on older hardware, it could take up to 7 times longer.

14

Solution 3: NUMA-Aware Dispatcher
• The core idea is to couple computation and data placement on the same socket.

• placing a higher value on the placement of model weights than on that of the KV cache

15

Solution 3: NUMA-Aware Dispatcher
• The GPU prefill a batch of request

• Devide a batch into sevral min-batch

• Select a min-batch of requests and excute them using a pipeline method

16

Discussion
• Adapting to Faster CPU

• Our Setup

• GPU: A100

• CPU: Intel(R) Xeon(R) Gold 6148 CPU

• Using RL for Resource Management

17

Conclusion
• hLLM is designed to offload the decoding stages to the CPU, effectively

reducing the interference that can occur between the prefilling and decoding
phases.

• hLLM intelligently allocates GPU and CPU resources to optimize the
distribution of computational capabilities across different devices.

• hLLM boosts GPU prefill throughput by employing a task scheduling strategy
that mitigates internal interference.

• hLLM designs a NUMA-aware dispatcher to avoid performance degradation.

Thank you!

