hLLM: A Numa-aware Heterogeneous Platform for High-throughput Large Language Models Service

Kexin Chu Tzechinh Liu Pengchao Yuan Wei Zhang

University of Connecticut

LLM Evolutionary Tree

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond

Cost of Serving

OpenAI GPT API Pricing Calculator

Wondering about how the OpenAI GPT and other AI model pricing works? Here's a pricing calculator for OpenAI GPT API, Azure OpenAI APIs, Anthropic Claude API.

So OpenAl gpt-3.5-turbo So OpenAl gpt-3.5-turbo-instruct So OpenAl gpt-4-turbo (beta) So OpenAl gpt-4 So OpenAl gpt-4-32k Anthropic claude-2

A Anthropic claude-instant-1

An execution includes both the prompt sent and the response .						
Tokens per execution	Words per execution	Price for 1 execution ⑦	OpenAl price for 216000 executions ⑦	Using GPT for Work (Sheets or Excel) Including OpenAl cost With your own API key		
10	8	~\$0.00020	~\$43.20	~\$86.40		
20	15	~\$0.00040	~\$86.40	~\$172.80		
50	38	~\$0.00100	~\$216.00	~\$432.00		
100	75	~\$0.00200	~\$432.00	~\$864.00		
200	150	~\$0.00400	~\$864.00	~\$1728.00		
500	375	~\$0.01000	~\$2160.00	~\$4320.00		
1000	750	~\$0.02000	~\$4320.00	~\$8640.00		
2000	1500	~\$0.04000	~\$8640.00	~\$17280.00		
4000	3000	~\$0.08000	~\$17280.00	~\$34560.00		

Understanding the cost of Large Language Models

The two-stage process

- Prefilling stage
 - Process all the input tokens at once
 - Compute- intensive
- Decoding stage
 - Generate one token at a time
 - Memory-intensive
- Process these two stage on the same GPU

Key observations

- Current LLM inference systems often integrate the prefilling and decoding stages on a single GPU, which can lead to two types of interference.
 - The interference bewteen the prefilling and decoding
 - The interference within the prefilling
- CPU resource is more affordable than the expensive GPU resource

Our goal

 We concentrate on mitigating the interference among the tasks of Large Language Model (LLM) services by asynchronously offloading the computational requests during the decoding stages to the CPU.

Architecture overview

Challenge 1 How many CPUs are required to match the token generate speed on GPUs?

- The resource allocation between CPU and GPU is influenced by the length of requests:
 - 512 tokens: GPU/CPU = 235
 - 24k tokens: GPU/CPU = 13.5
- User's requests come randomly

Solution 1 Heterogeneous Resource Match Controller

- Goals:
 - Ensure adequate CPU resources for decoding during periods of high workload burstiness .

(1)

- Preventing excessive CPU idleness during times of low demand
- Solution:
 - An M/M/c queue : $\rho = \frac{\lambda}{c\mu}$
 - Poisson distribution
 - λ : mean inter-arrival times of batches completing the prefill process by the GPU
 - $\frac{1}{\mu}$: latency of the decoding process
 - *c*: the number of CPUs

Solution 1 Heterogeneous Resource Match Controller

• Solution:

•
$$E(W) = \Pi_w \times \frac{1}{1 - \rho} \frac{1}{c\mu}$$
(2)

- Three steps to allocate the CPU:
 - Profile the GPUs and the workloads to figure out the arrival rate λ
 - Profile the CPUs and the requests requiring decoding to obtain the mean decoding latency
 - Set an atcceptable waiting time threshold

Challenge 2: How to prevent mutual interference among requests with different lengths during prefilling?

- Within the prefilling stage, the varying lengths of requests within the same batch can also cause interference.
- Our preliminary experiment shows that compared to using batches with similar prompt lengths, forming batches with random request lengths leads to a decrease in prefilling throughput: from 2.57 q/s(question per second) to 2.0 q/s.

S1	S2	S3	pad	pad	pad	pad	pad
<mark>S1</mark>	S2	S3	S 4	S5	pad	pad	pad
S1	S2	S3	S 4	S5	S6	S 7	S8
S1	S2	pad	pad	pad	pad	pad	pad
S1	S2	S3	S4	pad	pad	pad	pad
S1	S2	S3	S4	S5	S6	pad	pad

Solution 2. Hierarchical GPU Scheduler

• Core idea: groups requests of similar lengths into batches

Challenge 3: How to reduce cross-node data access overhead under the NUMA architecture?

- The performance of NUMA can degrade significantly if numerous memory transactions occur remotely from another socket.
- Remote access takes ~30% longer than a local access, while on older hardware, it could take up to 7 times longer.

Solution 3: NUMA-Aware Dispatcher

- The core idea is to couple computation and data placement on the same socket.
- placing a higher value on the placement of model weights than on that of the KV cache

Solution 3: NUMA-Aware Dispatcher

- The GPU prefill a batch of request
- Devide a batch into sevral min-batch
- Select a min-batch of requests and excute them using a pipeline method

Time	1	2	3	4	5	6	7	8	9	10
batch_1	Prefill_{chunk 1}	Prefill_{chunk 2}	Prefill_{chunk 3}	Prefill_{chunk 4} Offload_{chunk 3}	Offload_{chunk 4}					GPU
Minbatch_1			Decode_{chunk 1}	Decode_{chunk 2}	Decode_{chunk 3}	Decode_{chunk 4}		_		CPU
Minbatch_2				Decode_{chunk 1}	Decode_{chunk 2}	Decode_{chunk 3}	Decode_{chunk 4}			
Minbatch_3					Decode_{chunk 1}	Decode_{chunk 2}	Decode_{chunk 3}	Decode_{chunk 4}		
Minbatch_4						Decode_{chunk 1}	Decode_{chunk 2}	Decode_{chunk 3}	Decode_{chunk 4}	
Minbatch_1							Decode_{chunk 1}	Decode_{chunk 2}	Decode_{chunk 3}	Decode_{chunk 4}

Discussion

- Adapting to Faster CPU
 - Our Setup
 - GPU: A100
 - CPU: Intel(R) Xeon(R) Gold 6148 CPU
- Using RL for Resource Management

Conclusion

- hLLM is designed to offload the decoding stages to the CPU, effectively reducing the interference that can occur between the prefilling and decoding phases.
- hLLM intelligently allocates GPU and CPU resources to optimize the distribution of computational capabilities across different devices.
- hLLM boosts GPU prefill throughput by employing a task scheduling strategy that mitigates internal interference.
- hLLM designs a NUMA-aware dispatcher to avoid performance degradation.

Thank you!