
Jude Haris, Rappy Saha, Wenhao Hu, José Cano
School of Computing Science

University of Glasgow, Scotland, UK

ARC-LG Workshop @ ISCA’24
Buenos Aires, Argentina – 30/06/2024

gicLAB

SECDA-LLM

Designing Efficient LLM Accelerators
for Edge Devices

Glasgow Intelligent Computing Lab (gicLAB)

School of

Computing Science

Systems Section (GLASS)

Computing Systems

&

Machine Learning

1 PostDoc

5 PhD students

2 MSc students

2
https://giclab.dcs.gla.ac.uk/

https://giclab.dcs.gla.ac.uk/

Deep Learning Acceleration Stack (DLAS)

*[P. Gibson, J. Cano, E. J. Crowley, M. O'Boyle, A. Storkey, “DLAS: A Conceptual Model for Across-Stack Deep

Learning Acceleration”, ACM TACO’24 (conditionally accepted)]

Neural Network Models & Datasets
(Image, video, voice, text, etc)

Optimization Techniques
(pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats
(GEMM, Winograd, CSR, Encryption, etc)

Systems Software
(Libraries, frameworks, compilers, etc)

Hardware
(Server class, Edge/IoT/Tiny devices)

*Across-stack

optimizations

are required to

provide efficient

solutions!

3

Outline

• Large Language Models (LLMs)

• SECDA Methodology

• SECDA-LLM

• Conclusions and Future Work

4

Large Language Models (LLMs)

• LLMs are a family of models that use the Transformer-based

architecture

• Great at solving many language related tasks

– Text Generation, AI assistants, Code generation

• Greatly increase upon the number of parameters used

– PaLM 2 apparently has 340 billion parameters!

• Many optimization techniques to improve execution performance

– KV (key-value) Caching

– Quantization

5

llama.cpp

• A pure C/C++ library with minimal external dependencies

• Enables LLM inference with minimal setup on wide range

of hardware devices

• Supports multi-modal and custom LLMs, along with well-

known LLM models, (e.g., Llama, Falcon, GPT, Gemma)

• Utilizes GGUF (GPT-Generated Unified Format) and

supports various type of quantization (1.5-bit, 2-bit, 3-bit,

4-bit, 5-bit, 6-bit, and 8-bit)

• Open source, with fast development and active community

6

https://github.com/ggerganov/llama.cpp

https://github.com/ggerganov/llama.cpp

LLMs on Resource Constrained Edge Devices

• Running LLMs on the edge has become popular with

concerns on network availability, security and privacy

• Executing LLMs on edge devices is difficult due to

computation and memory demands

• The problem is further exacerbated on resource-

constrained edge devices

• Hence, we need to develop specialized hardware

accelerators to efficiently process LLMs with limited

resources

7

Developing Specialized Hardware Accelerators

• Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can

make deep learning faster and more energy efficient (e.g. at the edge)

– FPGAs are reconfigurable circuits commonly present in edge devices

• Problem: current solutions for designing DNN accelerators for edge devices

with FPGAs have a very high development cost

– They require High Level Synthesis (HLS)

– FPGA synthesis is a very slow process that is repeated (over designs)

– System integration issues (e.g. accelerator and DNN framework)

• Solution: we proposed a design methodology (SECDA) to efficiently reduce

the development time of FPGA-based accelerators (for edge devices)

– Combines cost-effective SystemC simulation with hardware execution

8

High Level Synthesis (HLS)

SECDA Methodology: Overview

• SECDA: SystemC Enabled Codesign of DNN Accelerators

9

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA: Efficient Hardware/Software Co-Design of FPGA-

based DNN Accelerators for Edge Inference”, SBAC-PAD’21]

SECDA Methodology: Components

• Application Framework

– It is able to run the

target workloads (DNN

models) without an

accelerator (e.g. CPU)

– Examples:

• TFLite

• PyTorch Mobile

• QKeras

• llama.cpp

• …

10

SECDA Methodology: Components (2)

• Accelerator Driver

– Bridge between an

application framework

and an accelerator

– Vital for hw/sw co-design,

impacts latency and

energy consumption

– Examples

• Data packing and

unpacking

• DMA transfers

• …

11

SECDA Methodology: Components (3)

• SystemC Accelerator

– SystemC Transaction-

Level Modelling

– SystemC Simulation

– End-to-end simulation

(full DNN models)

– High-level Synthesis

12

SECDA Methodology: Components (4)

• SystemC Testbench

– Allows unit testing

(hardware accelerator)

– Performance tuning for

the entire accelerator

design or specific

SystemC modules

– Simulation driven by

random or sample data

13

SECDA Methodology: Components (5)

• Hardware Synthesis

– SystemC defined

accelerator

– HLS compilation to

produce RTL code (e.g.

Verilog)

– Logic synthesis to map

design onto the

hardware (FPGA)

14

SECDA Methodology: Components (6)

• Hardware Accelerator

– FPGA mapped

accelerator

– Full system evaluation

on the target hardware

15

SECDA Methodology: Design Loop

• Logic synthesis is time consuming

• SECDA reduces the number of logic

synthesis iterations via simulation

• Accelerator/driver (hw/sw) co-design

enables easier full system integration

16

• Software SystemC Simulation

– To profile the performance (e.g. cycles) of the individual components of the accelerator or the

overall performance of data processing within the accelerator

• Hardware Execution

– To obtain more accurate and additional performance data of DNN models, such as real data

transfer latencies between off-chip and on-chip memory

SECDA-TFLite

• A toolkit for designing

custom FPGA-based

accelerators for TFLite

• Instantiates the SECDA

methodology within TFLite

• Enables fast prototyping

and integration of new

accelerators with

significantly reduced

initial setup costs

17

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA-TFLite: A Toolkit for Efficient Development of FPGA-

based DNN Accelerators for Edge Inference”, Elsevier JPDC’23]

SECDA-LLM

• A toolkit for designing custom

FPGA-based accelerators for LLMs

• Instantiates the SECDA

methodology within llama.cpp

• Enables fast prototyping and

integration of new accelerators with

significantly reduced initial setup

costs

18

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Connecting llama.cpp

• SECDA-LLM uses llama.cpp as the

“Application Framework”

• Enables acceleration of LLMs

based on GGUF (GPT-Generated

Unified Format)

• Target operations (matmul, softmax)

are offloaded from the GGML (GPT-

Generated Model Language)

backend to our custom accelerator

• A context_handler is created to

pass operation parameters and

metadata to the Accelerator Driver

19

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Generation

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Simulation Design Loop

• The Accelerator Driver initiates the

simulation-based design loop

enabling rapid accelerator prototyping

• The Accelerator design specified in

SystemC allows quick development

without the need of traditional HDLs

such as Verilog or VHDL

• End-to-end simulation verifies

correctness across real LLMs

• Simulation profiling tracks metrics,

e.g., cycle counts, PE utilization, on-

chip memory utilization

20

node 0

……

node N

Accelerator Driver

Profiler

SystemC

Integration

SystemC Acc

Simulation

AXI API

FPGA Acc

FPGA Eval

HW-Synthesis

llama.cpp

graph_executor

GGML

Backend

Operations

context_handler

LLM

LLMSECDA

Required Optional

Offload

Hardware Generation and Evaluation

• The developer can quickly evaluate

accelerator designs through SystemC

HLS and FPGA synthesis

• The Hardware-Synthesis tool

– JSON-based configuration file

– Automated HLS+ bitstream

generation

• AXI-API connects the FPGA

accelerator with the driver

– No driver code change required

• Hardware profiling tracks real time

performance

21

Case study: MatMul Acceleration

• Using SECDA-LLM we developed a specialized FPGA-based accelerator for LLM inference

• We accelerate the MatMul kernel, the most expensive operation within LLMs (~97% for TinyLlama)

• We use block floating point (BFP) quantization (common in llama.cpp) with Q3_K_Q8_K configuration

– Weights use Q3_K super-blocks, i.e. ~3.5 bit quantization

– Inputs use Q8_K super-blocks, i.e. ~9.1 bit quantization

22

Q3_K super-block Data Format

block scalars

super-block scalar

weights3 bits

6 bits

16 bits

256 values

Case study: Accelerator Design

23

• Simple opcodes to configure and control the accelerator

• The scheduler enables MatMul tiling to increase data reuse

• Super-Block Vector Processor

– Exploits parallelism across super-blocks

– Q3_K_Q8_K format specific optimizations

Runtime Model (HW execution)

24

• It shows how we integrate the accelerators within llama.cpp via Accelerator Driver

• PYNQ Z1 board

– Arm A9 dual-core CPU @ 650 MHz

– Xilinx Z020 edge FPGA

– 512 MB DDR3 memory

• TinyLlama model, 1.1B parameters (460MB~)

– With Q3_K_Q8_K BFP quantization

– Guanaco dataset

• We evaluate inference latency across different

hardware configurations

– CPU only (2 threads)

– CPU + accelerator

Evaluation: Experimental Setup

25

• CPU + Acc achieves 11x speedup in terms of

token generation

– Around 1.7s per token (~2s per word)

– Compared to only CPU 19.2s (~26s per word)

• We also tracked more in-depth profiling of

accelerator + driver performance across

different design iterations

– v1: simplest design

– v2: exploits super-block parallelism

– v3: introduced scheduler to enable data-reuse

Evaluation: Results

26

Conclusions and Future Work

• SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators

for edge LLM inference employing the SECDA design methodology

• As a case study we design and implement a MatMul accelerator and improve performance by 11x

compared the CPU-only baseline for the TinyLlama model on a resource constrained edge FPGA

• We plan to expand SECDA-LLM as an open-source platform to enable collaborative development and

continuous improvement of LLMs’ performance of resource constraint edge devices

27

Acknowledgements

28

1) Researchers and students at

3) Collaborators from Academia

2) Funding bodies

4) Collaborators from Industry and Labs

gicLAB

Jude Haris (j.haris.1@research.gla.ac.uk), José Cano (Jose.CanoReyes@glasgow.ac.uk)
School of Computing Science

University of Glasgow, Scotland, UK

Thank you! Questions?

gicLAB

SECDA-LLM

Designing Efficient LLM Accelerators
for Edge Devices

mailto:j.haris.1@research.gla.ac.uk
mailto:Jose.CanoReyes@glasgow.ac.uk

