

SECDA-LLM

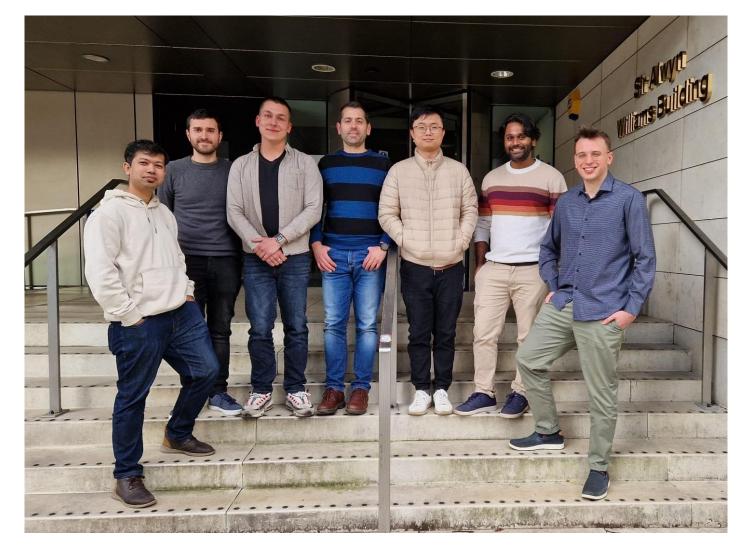
Designing Efficient LLM Accelerators for Edge Devices

Jude Haris, Rappy Saha, Wenhao Hu, José Cano

School of Computing Science University of Glasgow, Scotland, UK

ARC-LG Workshop @ ISCA'24 Buenos Aires, Argentina – 30/06/2024

Glasgow Intelligent Computing Lab (gicLAB)



https://giclab.dcs.gla.ac.uk/

School of Computing Science Systems Section (GLASS)

Computing Systems & Machine Learning

PostDoc
 PhD students
 MSc students

Deep Learning Acceleration Stack (DLAS)

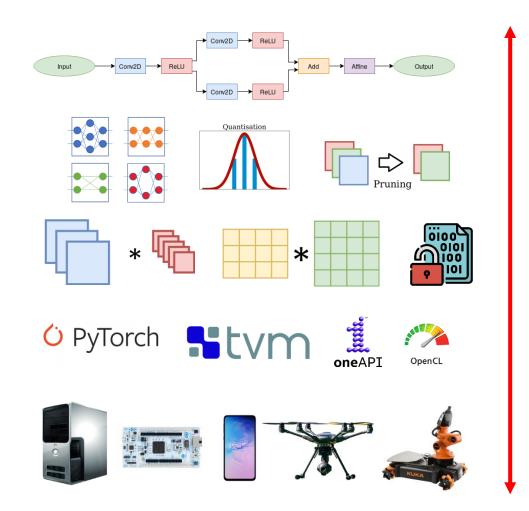
Neural Network Models & Datasets (Image, video, voice, text, etc)

Optimization Techniques (pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats (GEMM, Winograd, CSR, Encryption, etc)

Systems Software (Libraries, frameworks, compilers, etc)

Hardware (Server class, Edge/IoT/Tiny devices)



*Across-stack optimizations are required to provide efficient solutions!

*[P. Gibson, <u>J. Cano</u>, E. J. Crowley, M. O'Boyle, A. Storkey, "*DLAS: A Conceptual Model for Across-Stack Deep Learning Acceleration*", **ACM TACO'24** (conditionally accepted)]

Outline

• Large Language Models (LLMs)

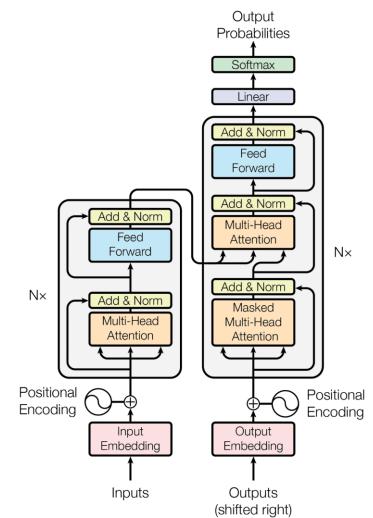
SECDA Methodology

• SECDA-LLM

• Conclusions and Future Work

Large Language Models (LLMs)

- LLMs are a family of models that use the Transformer-based architecture
- Great at solving many language related tasks
 - Text Generation, AI assistants, Code generation
- Greatly increase upon the number of parameters used
 - PaLM 2 apparently has 340 billion parameters!
- Many optimization techniques to improve execution performance
 - KV (key-value) Caching
 - Quantization



Jniversity

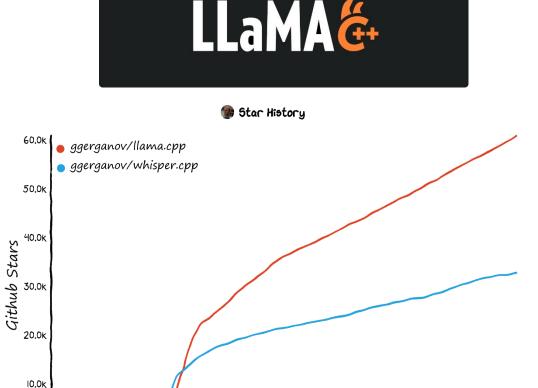
April

2024

llama.cpp

- A pure C/C++ library with minimal external dependencies
- Enables LLM inference with minimal setup on wide range of hardware devices
- Supports multi-modal and custom LLMs, along with wellknown LLM models, (e.g., Llama, Falcon, GPT, Gemma)
- Utilizes GGUF (GPT-Generated Unified Format) and supports various type of quantization (1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit)
- Open source, with fast development and active community

https://github.com/ggerganov/llama.cpp



July

Date

October

2023

October

April

LLMs on Resource Constrained Edge Devices

• Running LLMs on the edge has become popular with concerns on network availability, security and privacy

 Executing LLMs on edge devices is difficult due to computation and memory demands

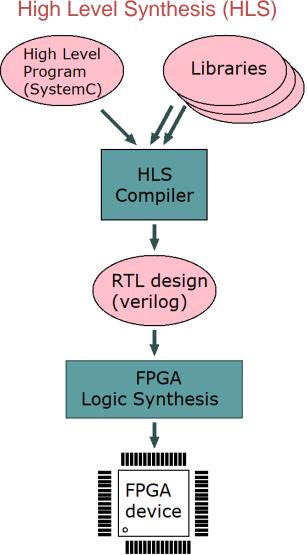
• The problem is **further exacerbated on resourceconstrained** edge devices

 Hence, we need to develop specialized hardware accelerators to efficiently process LLMs with limited resources

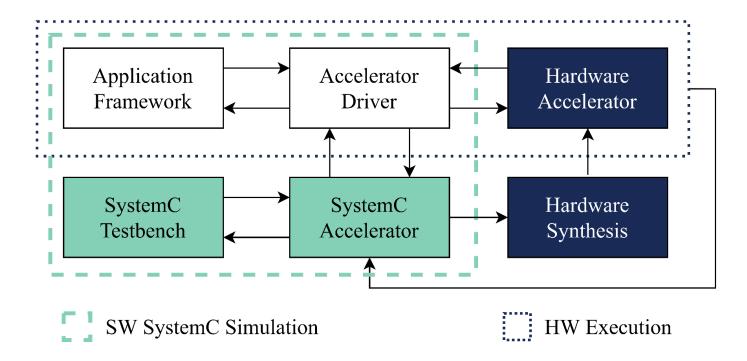
Developing Specialized Hardware Accelerators

- Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can make deep learning faster and more energy efficient (e.g. at the edge)
 - FPGAs are reconfigurable circuits commonly present in edge devices

- **Problem**: current solutions for designing DNN accelerators for edge devices with FPGAs have a very high development cost
 - They require High Level Synthesis (HLS)
 - FPGA synthesis is a very slow process that is repeated (over designs)
 - System integration issues (e.g. accelerator and DNN framework)
- **Solution**: we proposed a design methodology (SECDA) to efficiently reduce the development time of FPGA-based accelerators (for edge devices)
 - Combines cost-effective SystemC simulation with hardware execution



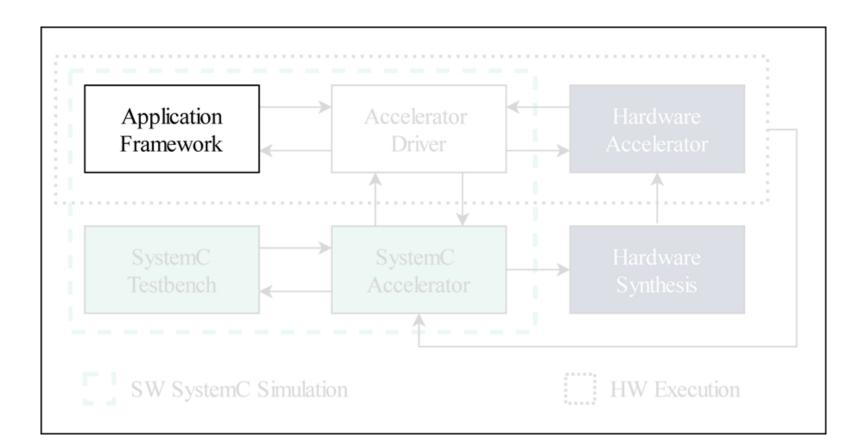
SECDA Methodology: Overview



*[J. Haris, P. Gibson, <u>J. Cano</u>, N. B. Agostini, D. Kaeli, "SECDA: Efficient Hardware/Software Co-Design of FPGAbased DNN Accelerators for Edge Inference", **SBAC-PAD'21**]

SECDA Methodology: Components

- Application Framework
 - It is able to run the target workloads (DNN models) without an accelerator (e.g. CPU)
 - Examples:
 - TFLite
 - PyTorch Mobile
 - QKeras
 - llama.cpp
 - ...

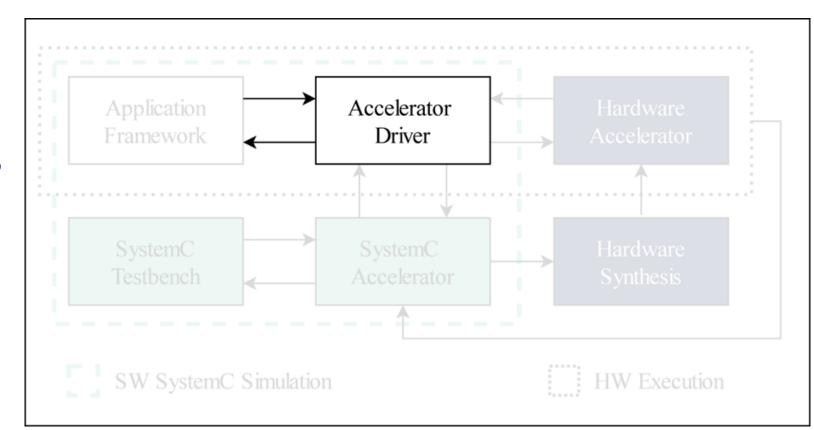


SECDA Methodology: Components (2)

- Accelerator Driver
 - Bridge between an application framework and an accelerator
 - Vital for hw/sw co-design, impacts latency and energy consumption
 - Examples

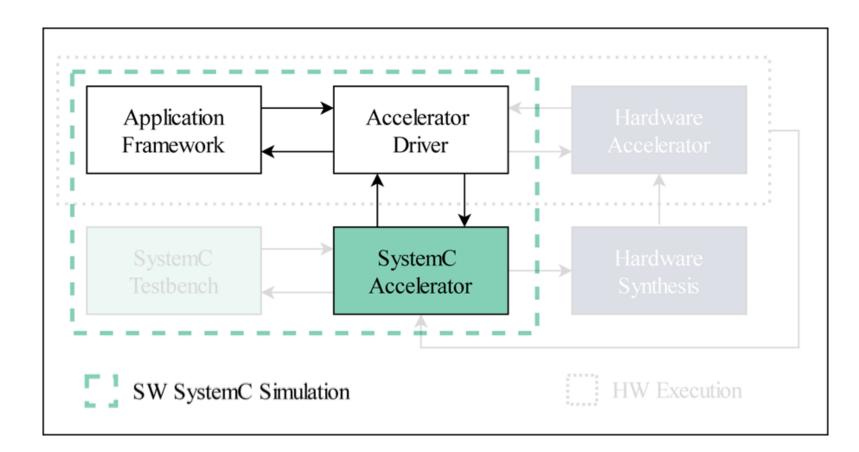
• ...

- Data packing and unpacking
- DMA transfers



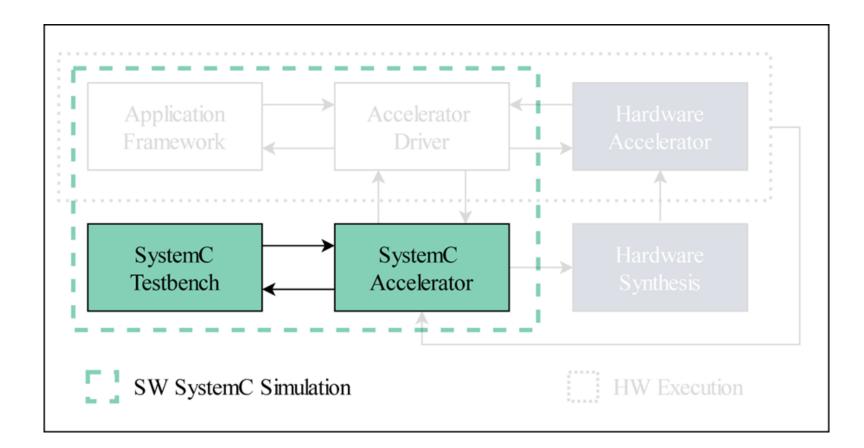
SECDA Methodology: Components (3)

- SystemC Accelerator
 - SystemC Transaction-Level Modelling
 - SystemC Simulation
 - End-to-end simulation (full DNN models)
 - High-level Synthesis



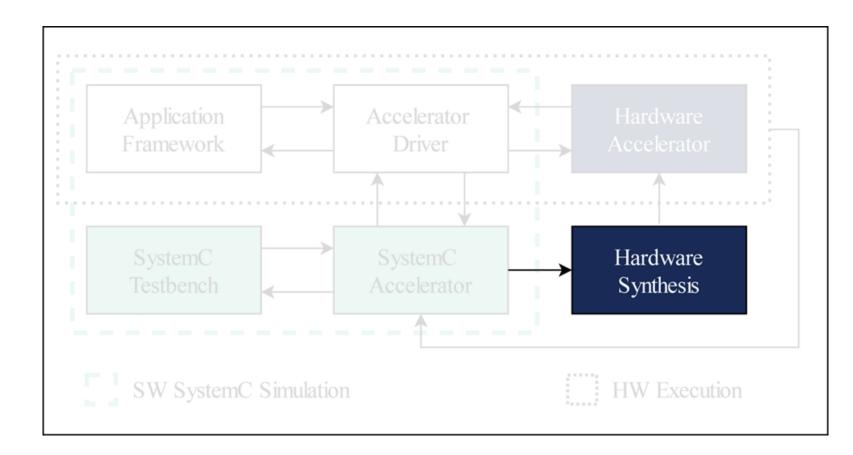
SECDA Methodology: Components (4)

- SystemC Testbench
 - Allows unit testing (hardware accelerator)
 - Performance tuning for the entire accelerator design or specific SystemC modules
 - Simulation driven by random or sample data



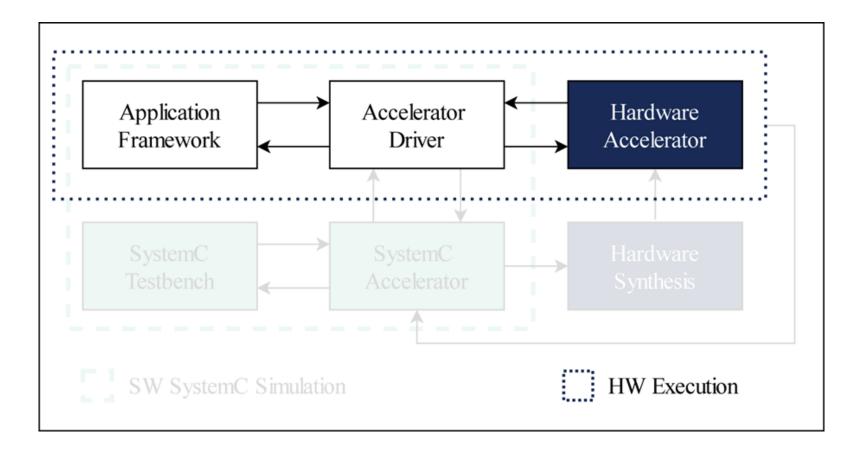
SECDA Methodology: Components (5)

- Hardware Synthesis
 - SystemC defined accelerator
 - HLS compilation to produce RTL code (e.g. Verilog)
 - Logic synthesis to map design onto the hardware (FPGA)



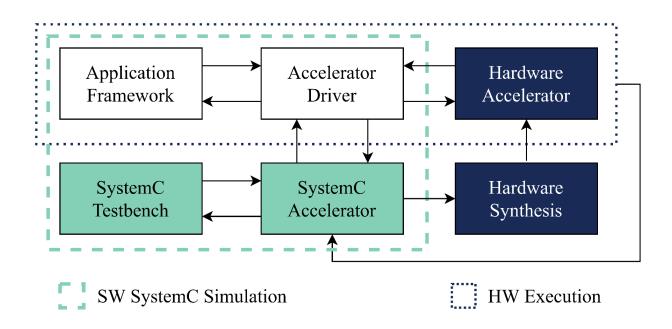
SECDA Methodology: Components (6)

- Hardware Accelerator
 - FPGA mapped accelerator
 - Full system evaluation on the target hardware



SECDA Methodology: Design Loop

- Logic synthesis is time consuming
- SECDA reduces the number of logic synthesis iterations via simulation
- Accelerator/driver (hw/sw) co-design enables easier full system integration



Software SystemC Simulation

 To profile the performance (e.g. cycles) of the individual components of the accelerator or the overall performance of data processing within the accelerator

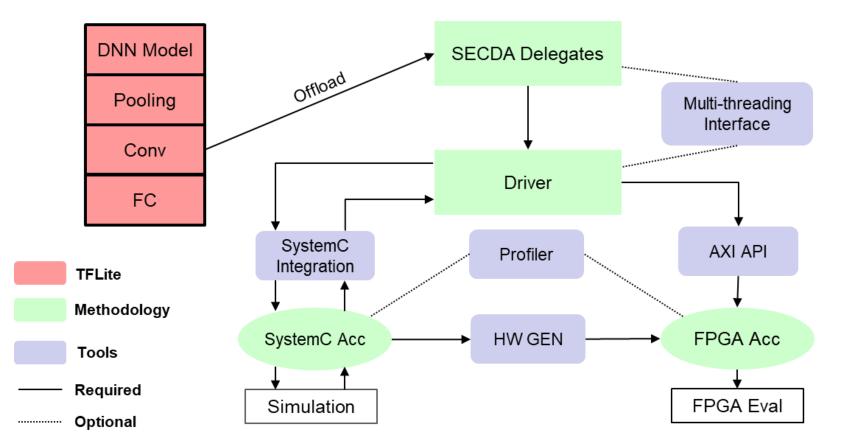
Hardware Execution

 To obtain more accurate and additional performance data of DNN models, such as real data transfer latencies between off-chip and on-chip memory

University of Glasgow

SECDA-TFLite

- A toolkit for designing custom FPGA-based accelerators for TFLite
- Instantiates the SECDA methodology within TFLite
- Enables fast prototyping and integration of new accelerators with significantly reduced initial setup costs



*[J. Haris, P. Gibson, <u>J. Cano</u>, N. B. Agostini, D. Kaeli, "SECDA-TFLite: A Toolkit for Efficient Development of FPGAbased DNN Accelerators for Edge Inference", **Elsevier JPDC'23**]

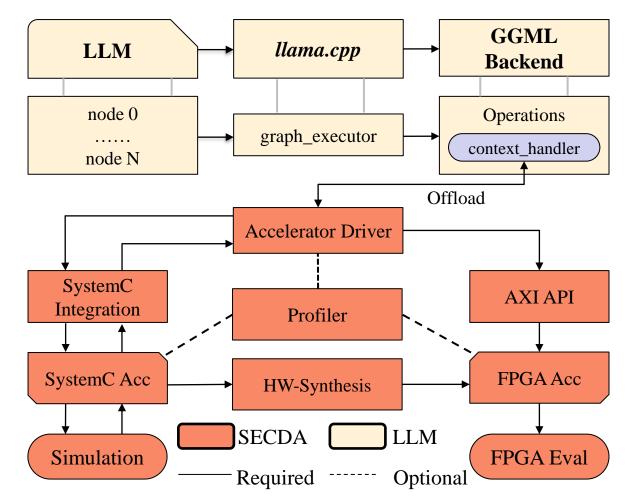
SECDA-LLM

University of Glasgow

 A toolkit for designing custom FPGA-based accelerators for LLMs

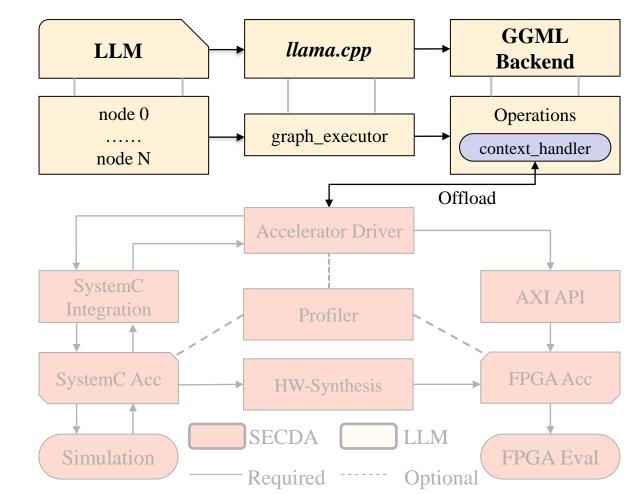
 Instantiates the SECDA methodology within *llama.cpp*

 Enables fast prototyping and integration of new accelerators with significantly reduced initial setup costs



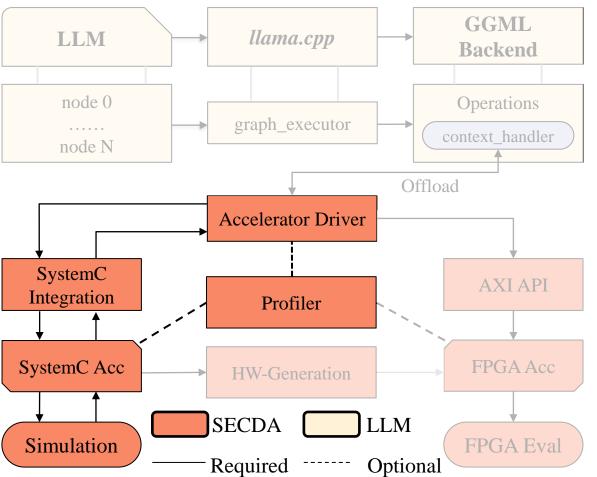
Connecting *llama.cpp*

- SECDA-LLM uses *llama.cpp* as the "Application Framework"
- Enables acceleration of LLMs based on GGUF (GPT-Generated Unified Format)
- Target operations (matmul, softmax) are offloaded from the GGML (GPT-Generated Model Language) backend to our custom accelerator
- A context_handler is created to pass operation parameters and metadata to the Accelerator Driver



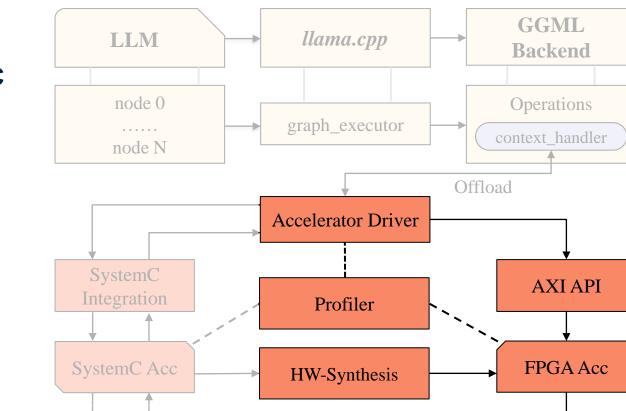
Simulation Design Loop

- The Accelerator Driver initiates the simulation-based design loop enabling rapid accelerator prototyping
- The Accelerator design specified in SystemC allows quick development without the need of traditional HDLs such as Verilog or VHDL
- End-to-end simulation verifies
 correctness across real LLMs
- **Simulation profiling** tracks metrics, e.g., cycle counts, PE utilization, onchip memory utilization



Hardware Generation and Evaluation

- The developer can quickly evaluate accelerator designs through SystemC HLS and FPGA synthesis
- The Hardware-Synthesis tool
 - JSON-based configuration file
 - Automated HLS+ bitstream generation
- **AXI-API** connects the FPGA accelerator with the driver
 - No driver code change required
- Hardware profiling tracks real time performance



SECDA

Required

Simulation

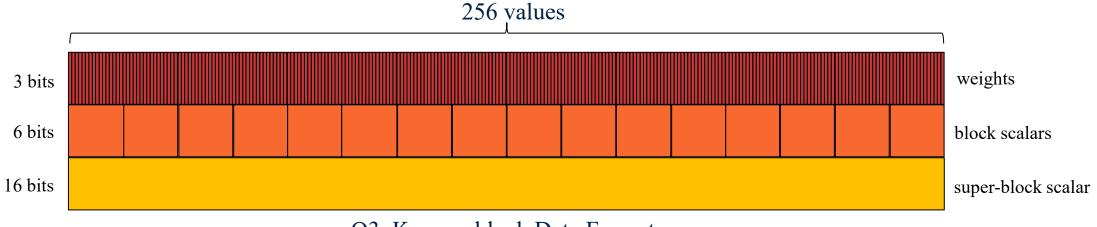
LLM

Optional

FPGA Eval

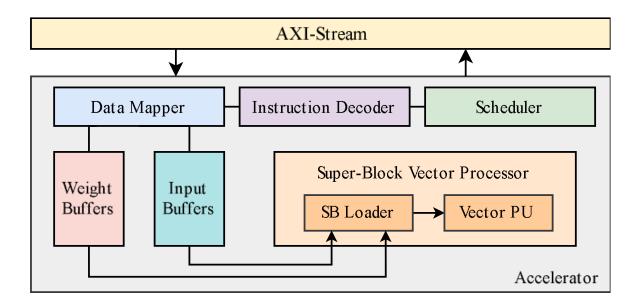
Case study: MatMul Acceleration

- Using SECDA-LLM we developed a specialized FPGA-based accelerator for LLM inference
- We accelerate the MatMul kernel, the most expensive operation within LLMs (~97% for TinyLlama)
- We use **block floating point (BFP)** quantization (common in *llama.cpp*) with Q3_K_Q8_K configuration
 - Weights use Q3_K super-blocks, i.e. ~3.5 bit quantization
 - Inputs use Q8_K super-blocks, i.e. ~9.1 bit quantization



Q3_K super-block Data Format

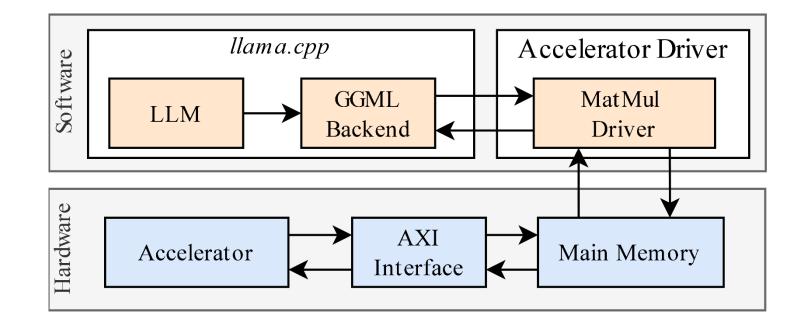
Case study: Accelerator Design



- Simple opcodes to configure and control the accelerator
- The scheduler enables MatMul tiling to increase data reuse
- Super-Block Vector Processor
 - Exploits parallelism across super-blocks
 - Q3_K_Q8_K format specific optimizations

Runtime Model (HW execution)

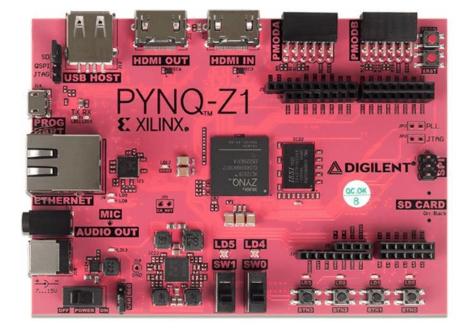
• It shows how we integrate the accelerators within *llama.cpp* via Accelerator Driver



Evaluation: Experimental Setup

PYNQ Z1 board

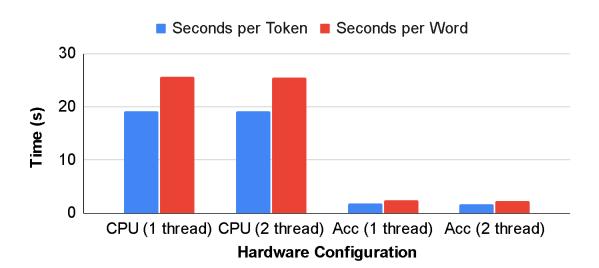
- Arm A9 dual-core CPU @ 650 MHz
- Xilinx Z020 edge FPGA
- 512 MB DDR3 memory
- **TinyLlama** model, 1.1B parameters (460MB~)
 - With Q3_K_Q8_K BFP quantization
 - Guanaco dataset
- We evaluate **inference** latency across different hardware configurations
 - CPU only (2 threads)
 - CPU + accelerator

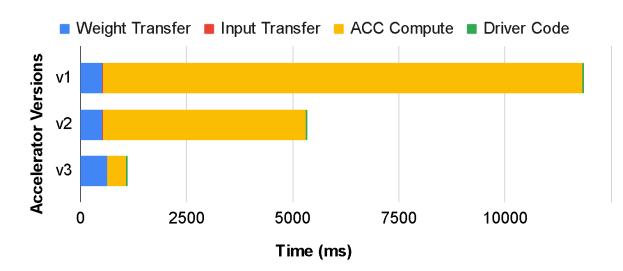


Evaluation: Results

- CPU + Acc achieves 11x speedup in terms of token generation
 - Around 1.7s per token (~2s per word)
 - Compared to only CPU 19.2s (~26s per word)

- We also tracked more in-depth profiling of accelerator + driver performance across different design iterations
 - v1: simplest design
 - v2: exploits super-block parallelism
 - v3: introduced scheduler to enable data-reuse





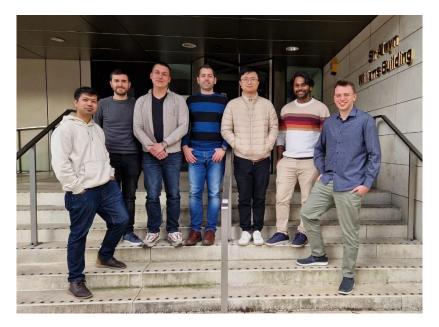
Conclusions and Future Work

 SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators for edge LLM inference employing the SECDA design methodology

• As a **case study** we design and implement a MatMul accelerator and improve performance by 11x compared the CPU-only baseline for the TinyLlama model on a resource constrained edge FPGA

• We plan to expand SECDA-LLM as an open-source platform to enable collaborative development and continuous improvement of LLMs' performance of resource constraint edge devices

Acknowledgements



1) Researchers and students at gicLAB (\$)

2) Funding bodies

Engineering and Physical Sciences Research Council

University of Glasgow

3) Collaborators from Academia

4) Collaborators from Industry and Labs

SECDA-LLM

Designing Efficient LLM Accelerators for Edge Devices

Jude Haris (j.haris.1@research.gla.ac.uk), José Cano (Jose.CanoReyes@glasgow.ac.uk)

School of Computing Science University of Glasgow, Scotland, UK

