P

Universit :
ﬁﬁ' of Glas.govvy gicLAB @

VIA VER

SECDA-LLM

Designing Efficient LLM Accelerators
for Edge Devices

Jude Haris, Rappy Saha, Wenhao Hu, José Cano
School of Computing Science
University of Glasgow, Scotland, UK

ARC-LG Workshop @ ISCA’24
Buenos Aires, Argentina — 30/06/2024

™ Universit
of GlasgowY

Glasgow Intelligent Computing Lab (gicLAB)

School of
Computing Science

Systems Section (GLASS)

Computing Systems
&
Machine Learning

1 PostDoc
5 PhD students
2 MSc students

https://giclab.dcs.gla.ac.uk/

https://giclab.dcs.gla.ac.uk/

A University

Deep Learning Acceleration Stack (DLAS) Glasgow
A
Optimization Techniques oed el Qm
(pruning, quantization, NAS/HPO, etc) o o 9% IrL‘ Piilgr *Across-stack
optimizations
Algorithmic Primitives & Data Formats ‘ ‘ P I% « are required to
(GEMM, Winograd, CSR, Encryption, etc) provide efficient
solutions!
Systems Software O PyTorch = £
(Libraries, frameworks, compilers, etc) h tvm oneAPI Openct
Hardware
(Server class, Edge/IoT/Tiny devices)
v

*[P. Gibson, J. Cano, E. J. Crowley, M. O'Boyle, A. Storkey, “DLAS: A Conceptual Model for Across-Stack Deep
Learning Acceleration”, ACM TACO’24 (conditionally accepted)]

B University
of Glasgow

Outline

 Large Language Models (LLMS)

« SECDA Methodology

« SECDA-LLM

e Conclusions and Future Work

Large Language Models (LLMs)

LLMs are a family of models that use the Transformer-based

architecture

Great at solving many language related tasks

— Text Generation, Al assistants, Code generation

Greatly increase upon the number of parameters used

— PalLM 2 apparently has 340 billion parameters!

Many optimization techniques to improve execution performance

— KV (key-value) Caching

— Quantization

A University
of Glasgow

Output
Probabilities

Linear

g N\
Add & Norm
Feed
Forward
e ™\ Add & Norm
_ .
avel el Multi-Head
Feed Attention
Forward 7 7 Nx
Nix | Add & Norm :
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At At
_ J \ _J)
Positional o) ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

[lama.cpp

* A pure C/C++ library with minimal external dependencies

» Enables LLM inference with minimal setup on wide range

of hardware devices

» Supports multi-modal and custom LLMs, along with well-
known LLM models, (e.g., Llama, Falcon, GPT, Gemma)

Github Stars

 Utilizes GGUF (GPT-Generated Unified Format) and
supports various type of quantization (1.5-bit, 2-bit, 3-bit,
4-bit, 5-bit, 6-bit, and 8-bit)

« Open source, with fast development and active community

https://github.com/ggerganov/llama.cpp

60.0k

50.0k

H0.0k

B University

o of Glasgow

[t

@ Star History

@ ggerganov/llama.cpp
® ggerganov/whisper.cpp

(€]
o
o
ES

20,0k

10.0k

April

October 2024

July
Date

October 2023 April

https://github.com/ggerganov/llama.cpp

™ Universit
of GlasgowY

LLMs on Resource Constrained Edge Devices

* Running LLMs on the edge has become popular with
concerns on network availability, security and privacy

« Executing LLMs on edge devices is difficult due to
computation and memory demands

* The problem is further exacerbated on resource-
constrained edge devices

* Hence, we need to develop specialized hardware
accelerators to efficiently process LLMs with limited
resources

™ University
Glasgow

Developing Specialized Hardware Accelerators

* Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can High Level Synthesis (HLS)

make deep learning faster and more energy efficient (e.g. at the edge) High Level @

Program
— FPGAs are reconfigurable circuits commonly present in edge devices (SystemC) <))

* Problem: current solutions for designing DNN accelerators for edge devices -
with FPGAs have a very high development cost |
— They require High Level Synthesis (HLS) _
RTL design
— FPGA synthesis is a very slow process that is repeated (over designs) (verilog)
— System integration issues (e.g. accelerator and DNN framework) }
« Solution: we proposed a design methodology (SECDA) to efficiently reduce }

the development time of FPGA-based accelerators (for edge devices) nmmm

FPGA
device

— Combines cost-effective SystemC simulation with hardware execution

o
Hnmmm

SECDA Methodology: Overview

« SECDA: SystemC Enabled Codesign of DNN Accelerators

Application
Framework |

Accelerator
Driver

SystemC
Testbench | |

SystemC
Accelerator

SW SystemC Simulation

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA: Efficient Hardware/Software Co-Design of FPGA-

A
|

Hardware
Accelerator

Hardware
Synthesis

based DNN Accelerators for Edge Inference”, SBAC-PAD’21]

: HW Execution

[t

&M Universit
¢ o Glassow

asgow

™ Universit
of GlasgowY

SECDA Methodology: Components

* Application Framework

— It is able to run the
target workloads (DNN
models) without an
accelerator (e.g. CPU) Application

Framework

— Examples:

« TFLite
PyTorch Mobile
QKeras

llama.cpp

10

™ Universit
of GlasgowY

SECDA Methodology: Components (2)

» Accelerator Driver

— Bridge between an
application framework
and an accelerator

Accelerator
- Driver

— Vital for hw/sw co-design,
impacts latency and
energy consumption

— Examples

« Data packing and
unpacking

- DMA transfers

11

™ Universit
of GlasgowY

SECDA Methodology: Components (3)

« SystemC Accelerator

— SystemC Transaction-
Level Modelling

_ _ Application | Accelerator
— End-to-end simulation T i
(full DNN models) SystemC

Accelerator

— High-level Synthesis

SW SystemC Simulation

12

™ Universit
of GlasgowY

SECDA Methodology: Components (4)

» SystemC Testbench

— Allows unit testing
(hardware accelerator)

— Performance tuning for
the entire accelerator
design or specific
SystemC modules

SystemC . SystemC
Testbench || Accelerator

— Simulation driven by
random or sample data

SW SystemC Simulation

13

™ Universit
of GlasgowY

SECDA Methodology: Components (5)

* Hardware Synthesis

— SystemC defined
accelerator

— HLS compilation to
produce RTL code (e.g.
Verilog)

_ _ Hardware
— Logic synthesis to map

design onto the
hardware (FPGA)

Synthesis

14

SECDA Methodology: Components (6)

 Hardware Accelerator

— FPGA mapped
accelerator

— Full system evaluation
on the target hardware

™ Universit
of GlasgowY

Application Accelerator
Framework | | Driver

: HW Execution

Hardware

Accelerator

15

B University

SECDA Methodology: Design Loop of Glasgow

Logic synthesis is time consuming

Application Accelerator Hardware

Framework |¢ Driver Accelerator

SECDA reduces the number of logic x :
SyntheS|S Iteratlons Vla Slmulatlon e e e .

. i Testbench Accelerator Synthesis
Accelerator/driver (hw/sw) co-design B y

) . ; A
enables easier full system integration |

SW SystemC Simulation : : HW Execution

Software SystemC Simulation

— To profile the performance (e.g. cycles) of the individual components of the accelerator or the
overall performance of data processing within the accelerator

Hardware Execution

— To obtain more accurate and additional performance data of DNN models, such as real data

transfer latencies between off-chip and on-chip memory 16

és University

SECDA-TFLite e of Glasgow
* A toolkit for designing DNN Model SECDA Delegates
accelerators for TFLite Pooling oft Multi-threading
Interface
Conv '
 Instantiates the SECDA Driver
methodology within TFLite FC | ' l
System_C -~ Profiler -. AXI API
. TFLite Integration
» Enables fast prototyping l T l
and integration of new Msthodology
accelerators with Tools SystemC Acc —» HWGEN —— FPGA Acc
§|gr)|f|cantly reduced Required { 4 ¥
initial setup costs _ Simulation FPGA Eval
............... 0ptl0na|

*[J. Haris, P. Gibson, J. Cano, N. B. Agostini, D. Kaeli, “SECDA-TFLite: A Toolkit for Efficient Development of FPGA-

based DNN Accelerators for Edge Inference”, Elsevier JPDC’23]
17

SECDA-LLM

« A toolkit for designing custom
FPGA-based accelerators for LLMs

* Instantiates the SECDA
methodology within llama.cpp

» Enables fast prototyping and
integration of new accelerators with
significantly reduced initial setup
costs

™ University

& of Glasgow
(GGML
LLM > llama.cpp > Backend
node 0 Operations
nodeN || dfapniexector ” C context_handler)

i Offload

(" Jsecpa

Required - Optional

18

University

Connecting llama.cpp of Glasgow
f | GGML
« SECDA-LLM uses llama.cpp as the LLM g e | Backend
“Application Framework”
node 0 Operations
nodeN | UL EER ~ (context_handler)
* Enables acceleration of LLMs L

based on GGUF (GPT-Generated v Offload
Unified Format)

» Target operations (matmul, softmax)
are offloaded from the GGML (GPT-
Generated Model Language)
backend to our custom accelerator

« A context_handler is created to
pass operation parameters and
metadata to the Accelerator Driver

19

A Universit
of Glasgowy

Simulation Design Loop

* The Accelerator Driver initiates the
simulation-based design loop
enabling rapid accelerator prototyping

* The Accelerator design specified in

SystemC allows quick development | Accelerator Driver

without the need of traditional HDLs , . :

such as Verilog or VHDL SystemC l
Integration 4 Profiler

A\ 4 (4

 End-to-end simulation verifies
correctness across real LLMs

SystemC Acc

A

> SECDA LLM
CSimuIation)
Required - Optional

« Simulation profiling tracks metrics,
e.g., cycle counts, PE utilization, on-
chip memory utilization

20

™ University

Hardware Generation and Evaluation & of Glasgow
f Lo GGML
« The developer can quickly evaluate LLM) ama.cpp Backend
accelerator designs through SystemC
HLS and FPGA synthesis node 0 UlgerEion
...... » Qgraph_executor >
node N C contextxhandler >

* The Hardware-Synthesis tool Offload

— JSON-based configuration file

A 4

— Automated HLS+ bitstream

_ SystemC
generation Integration
- AXI-API connects the FPGA SystemC Acc
accelerator with the driver 1
| | ; (C)secDA LLM
— No driver code change required CSimulation)

Required - Optional

« Hardware profiling tracks real time
performance

21

oA University

Case study: MatMul Acceleration & of Glasgow

» Using SECDA-LLM we developed a specialized FPGA-based accelerator for LLM inference
* We accelerate the MatMul kernel, the most expensive operation within LLMs (~97% for TinyLlama)

* We use block floating point (BFP) quantization (common in llama.cpp) with Q3_K Q8 K configuration
— Weights use Q3_K super-blocks, i.e. ~3.5 bit quantization

— Inputs use Q8 K super-blocks, i.e. ~9.1 bit quantization

256 Yalues

3 bits weights

6 bits block scalars

16 bits super-block scalar

Q3 K super-block Data Format

22

Case study: Accelerator Design

AXI-Stream
Data Mapper — Instruction Decoder [Scheduler
_ Super-Block Vector Processor
Weight Input
Buffers Buffers SB Loader —» Vector PU
A A

Accelerator

« Simple opcodes to configure and control the accelerator

* The scheduler enables MatMul tiling to increase data reuse

* Super-Block Vector Processor

— Exploits parallelism across super-blocks

— Q3 _K Q8 K format specific optimizations

« 28

University

of Gl

asgow

23

B University

Runtime Model (HW execution) of Glasgow

* |t shows how we integrate the accelerators within llama.cpp via Accelerator Driver

v llama.cpp Accelerator Driver
<
=
& GGML » MatMul
LLM :
A > Backend |« Driver
A

o Y
o~

—> AXI .
;z Accelerator < Interface |« Main Memory

24

oA University

Evaluation: Experimental Setup of Glasgow

* PYNQ Z1 board
— Arm A9 dual-core CPU @ 650 MHz
— Xilinx Z020 edge FPGA
— 512 MB DDR3 memory

* TinyLlama model, 1.1B parameters (460MB~)
— With Q3_K Q8 K BFP quantization

— Guanaco dataset

L -y MRS Q(‘ L
> e s

« We evaluate inference latency across different
hardware configurations

— CPU only (2 threads)

— CPU + accelerator
25

Evaluation: Results

« CPU + Acc achieves 11x speedup in terms of
token generation

— Around 1.7s per token (~2s per word)
— Compared to only CPU 19.2s (~26s per word)

* We also tracked more in-depth profiling of
accelerator + driver performance across
different design iterations

— v1: simplest design
— v2: exploits super-block parallelism

— v3: introduced scheduler to enable data-reuse

] University
Glasgow

B Seconds per Token ® Seconds per Word
30

20

Time (s)

10

CPU (1 thread) CPU (2 thread) Acc (1 thread) Acc (2 thread)
Hardware Configuration

m Weight Transfer ® Input Transfer = ACC Compute m Driver Code

v

V2

V3

Accelerator Versions

0 2500 5000 7500 10000

Time (ms)

26

M University
of Glasgow

Conclusions and Future Work

« SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators
for edge LLM inference employing the SECDA design methodology

» As a case study we design and implement a MatMul accelerator and improve performance by 11x
compared the CPU-only baseline for the TinyLlama model on a resource constrained edge FPGA

» We plan to expand SECDA-LLM as an open-source platform to enable collaborative development and
continuous improvement of LLMs’ performance of resource constraint edge devices

27

A University

of Glasgow

Acknowledgements

1) Researchers and students at gICLAB @

2) Funding bodies

Engineering and
Physical Sciences
Research Council

[]
.. Horizon *
) Europe D1CSA

ATION Computer Science Alliance

4) Collaborators from Industry and Labs

University of Essex
; &7 AMDZ1 <ANVIDIA

UNIVERSITAT

HEIDELBERG

ZUKUNFT

arm uitra@ 7

8%\ THE UNIVERSITY
- of EDINBURGH

UNIVERSIDAD DE | UNIVERSITAT PaCi'l;_i‘C
1SR Northwest

28

M Universit .
of Glas.govvy gicLAB @

SECDA-LLM

Designing Efficient LLM Accelerators
for Edge Devices

Jude Haris (j.haris.1@research.gla.ac.uk), José Cano (Jose.CanoReyes@glasgow.ac.uk)
School of Computing Science
University of Glasgow, Scotland, UK

Thank you! Questions?

mailto:j.haris.1@research.gla.ac.uk
mailto:Jose.CanoReyes@glasgow.ac.uk

