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Intruduction of LLLM and Motivation



Introductions of LLLM Inference

 Two stages:
»  Prefill: first iteration, compute all input tokens in a single pass
* Decode: utilize previous generated token as input

* Regressive generation

» Use Batches of sequences to improve GPU utilization.

Output [ Hi, ChatGPT, can you write a ...

[ Hi ChatGPT, Tell me a funny ...

[ Who is Alan Turing?

Layer 1

[ Hi, ChatGPT, Debug this python ...

—r—

Input | Artificial | Intelligence | is | [ Ignore all previous ...




Motivation of PrefixSmart

» All the tokens within a batch of requests is processed in prefill stage, even with

duplicate tokens.
» In some scenarios, there exists similar prefix tokens, such as few-shot aibot applications.

» These common prefix tokens can only be execute once and shared by all the requests.

Shared Prefix Unique Suffixes

You are ChatGPT, a large language model Hi, can you write a...
trained by OpenAI, based on the GPT-4 -
architecture. (

Knowledge cutoff: 2023-04 Tell me a funny...
Current date: 2023-11-16 )y

< S
Image input capabilities: Enabled LWho e il Meshief

When you send a message containing Debug this Python. ..
Python code to python, it will be

executed in a stateful Jupyter notebook |
enrivonment. Python will respond... Ignore all previous...




Prefill Latency vs End-to-End Latency
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Challenges of PrefixSmart

* How to detect the common prefix tokens efficiently.
*  Get shared prefix tokens
*  Group the requests with similar common prefix tokens.

* How to deal the interference from unequal-length suffixes
»  The prefill latency of different length prompt is different.

» Strategic offloading to CPUs

*  GPU memory is limited, the preemption will happen when GPU memory is not enough.

«  Use CPU rather than waiting for GPU resources.
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Design Details of PrefixSmart



Overview of PrefixSmart
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Common-prefix Identifier

«  Efficiently detect shared prefixes in a large number of input

prompts.

*  Adopting a trie tree approach called radix tree for detecting

shared prefixes within vast numbers of incoming requests.

. Prefix Radix Tree

. Traditional trie tree can become unwieldy with deep and wide

branches.

. Compacting common phrases and frequently used word.

«  Dynamic Pruning Strategy Igfjile‘ sun
. Dividing the prefix tokens into "Hot” and ”Cold” based on the /
frequency of them.

is

. The “Cold” prefixes are actively pruned by the system.




Common-Unique Slicer

* Intelligently segments prompts into shared prefix and unique suffix components.
»  Shared Prefix Trunk: Initial tokens shared across multiple prompts, allowing for single-time
computation and reuse.

*  Unique Suftix Trunks: Distinct suffixes requiring individual processing for each prompt

* The shared prefix trunk and unique suffix trunks are assigned to different iterations of

LLM inference.



Post-prefill Merger

» Integrates processed shared prefixes and unique suffixes into a coherent final output.
* Common-prefix Slicer: Dividing prompts into manageable parts

» Storage the KV cache through PagedAttention method

- .. =)

LLM Model LLM Model LLM Model
-/ - —_

Common Prefixes Unique Suffixes Decode Phase




Request-offload Selector

* Offloading ‘Cold’ or less computation-intensive tasks to CPU and Host Memory.
* Frees GPU resources for more critical and ‘Hot’ taks, especially when GPU
resources 1s unavailuable.

 The related KV cache should be offloaded.
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Discussion and Future Works



Discussion and Future Works

*  PrefixSmart improve the resource efficiency by addressing computation redundancies
in the prefill stage.
*  Future Works:
¢  Optimization of Long-Context Prompt Handling
» Use lightweight neural network model
« Segment long-context prompts into smaller

* Refinement of Prompt Slicing and Scheduling Algorithms
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