
PrefixSmart: Enhancing Large Language Model Efficiency
through Advanced Prompt Management

Yunding Li, Kexin Chu, Wei Zhang
University of Connecticut

Nannan Zhao
Northwestern Polytechnical University



CONTENTS

• Intruduction of LLM and Motivation

• Design Details of PrefixSmart

• Discussion and Future Works



01
Intruduction of LLM and Motivation



Introductions of LLM Inference

• Two stages:

• Prefill: first iteration, compute all input tokens in a single pass

• Decode: utilize previous generated token as input

• Regressive generation

• Use Batches of sequences to improve GPU utilization.

Hi, ChatGPT, can you write a …

Hi ChatGPT, Tell me a funny…

Who is Alan Turing?

Hi, ChatGPT, Debug this python…

Ignore all previous …

… …



Motivation of PrefixSmart
• All the tokens within a batch of requests is processed in prefill stage, even with

duplicate tokens.

• In some scenarios, there exists similar prefix tokens, such as few-shot aibot applications.

• These common prefix tokens can only be execute once and shared by all the requests.



Prefill Latency vs End-to-End Latency

• The computational overhead during the prefill stage increases with the length of the prompts



Challenges of PrefixSmart

• How to detect the common prefix tokens efficiently.
• Get shared prefix tokens

• Group the requests with similar common prefix tokens.

• How to deal the interference from unequal-length suffixes
• The prefill latency of different length prompt is different.

• Strategic offloading to CPUs
• GPU memory is limited, the preemption will happen when GPU memory is not enough.

• Use CPU rather than waiting for GPU resources.



02
Design Details of PrefixSmart



Overview of PrefixSmart

• Common-prefix Identifier

• Common-Unique Slicer

• Post-prefill merger

• Request-offload Selector

CPU Pool

CPU CPU

Scheduler
Common 

Prefix 
Identifier

…

Request 
Queue

Common-
Unique 
Slicer

Request-
Offload 
Selector

Common Prefix 
Prefill RQ

Post-prefill
Merge

Batch 
Selection

Unique-Suffix
Prefill RQ

Decode RQ

GPU

GPU

ŏ

GPU
CPU … CPU



Common-prefix Identifier

• Efficiently detect shared prefixes in a large number of input

prompts.

• Adopting a trie tree approach called radix tree for detecting

shared prefixes within vast numbers of incoming requests.

• Prefix Radix Tree
• Traditional trie tree can become unwieldy with deep and wide

branches.

• Compacting common phrases and frequently used word.

• Dynamic Pruning Strategy
• Dividing the prefix tokens into ”Hot” and ”Cold” based on the

frequency of them.

• The “Cold” prefixes are actively pruned by the system.

-

He I Artifi
cial Please Hi

Intelli
gence sun

is

…

… …

…



Common-Unique Slicer

• Intelligently segments prompts into shared prefix and unique suffix components.
• Shared Prefix Trunk: Initial tokens shared across multiple prompts, allowing for single-time

computation and reuse.

• Unique Suffix Trunks: Distinct suffixes requiring individual processing for each prompt

• The shared prefix trunk and unique suffix trunks are assigned to different iterations of

LLM inference.



Post-prefill Merger

• Integrates processed shared prefixes and unique suffixes into a coherent final output.

• Common-prefix Slicer: Dividing prompts into manageable parts

• Storage the KV cache through PagedAttention method

LLM Model LLM Model LLM Model

Common Prefixes Unique Suffixes Decode Phase

… …



Request-offload Selector

• Offloading ‘Cold’ or less computation-intensive tasks to CPU and Host Memory.

• Frees GPU resources for more critical and ‘Hot’ taks, especially when GPU

resources is unavailuable.

• The related KV cache should be offloaded.



03
Discussion and Future Works



Discussion and Future Works

• PrefixSmart improve the resource efficiency by addressing computation redundancies

in the prefill stage.

• Future Works:

• Optimization of Long-Context Prompt Handling

• Use lightweight neural network model

• Segment long-context prompts into smaller

• Refinement of Prompt Slicing and Scheduling Algorithms



Thanks


