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Decades of Innovations in Computer Systems

\. N \
~ \\) 5
- - - - Q) N -
- - - - o AN N ( /.
- - - - N— N \ \ | » / /
- - = - - - LN ’7":3,,1 m,.,_,\x//i, / R
|||||||||||||||||| e~ XN——
— 7 T~ 2 .
) 2“ ‘i 08 F—=~ *
ooo “ € = f——
d ¥ ~AL_§’ A\ N
ooo Yo BN A O

A TN S—
IR RER °oo ISRAITANNNY
i" ¢/ ) L*\ AN \
(‘d/ Y11 * o
J ( ) \L » ’

>1 +T '
, 000,000x+ Transistors O(10k) GPUs Domain-Specific Acceleration

750x Faster

Vertical Scaling Horizontal Scaling Specialization




Efficiency Keeps Computing’s Energy Growth ~O(1)

Major end-use category Data center type
Global data center ® Servers @ Storage @ Traditional Hyperscale
compute instances Network © Infrastructure Cloud (nonhyperscale)
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Recalibrating global data center energy-use estimates. Masanet et al. Science 2020.



Comeuting Industrx Faces an Unprecedented Growth

Artificial Intelligence
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Comeuting’s Energx Footerint

Google, Meta and Microsoft Energy Growth

Electricity Normalized to Meta 2017
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Exponential Growth Trend of Al | e o operate *600,000 1100 GPU

equivalents of compute” by year-end
Data , Model Si Z€ES, SYSte m Infrastructures Including 340,000 H100 Nvidia GPUs at its data centers
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Al’'s Operational CO.e
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Sustainable Al: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.



D You

| am planning a 5-day trip to Buenos Aires Argentina, mostly for the ISCA conference with
some personal touring opportunities. any suggestions for spots to visit, restaurants?

) MetaAl
Buenos Aires is a vibrant city with a rich culture and history. Here are some suggestions for
spots to visit and restaurants to try: I

Must-visit spots:
1. Plaza de Mayo: The heart of Buenos Aires' political and social life.
2. Recoleta Cemetery: A stunning necropolis with grand mausoleums.

3. La Boca: Colorful neighborhood with street art, tango performances, and football
passion.

4. Teatro Colén: One of the world's most famous opera houses.
5. San Telmo Market: Antique shops, street food, and live music.
Restaurant suggestions:
1. Don Julio (Parrilla): Try their famous asado (Argentine BBQ).
2. El Cuartito (Pizzeria): Delicious pizza and empanadas.
3. LaParrilla de la Renaissance (Steakhouse): High-quality meat and wine.
4. Café Tortoni (Café): Historic spot for coffee and pastries.
5. El Desnivel (Bistro): Cozy spot for breakfast and brunch.
Additional tips:
* Try some local street food, like choripan (grilled sausage sandwich) or churros.
* Explore the street art and murals in La Boca and San Telmo.

* Take atango lesson or watch a live performance.

* Visit the Museo Nacional de Bellas Artes (Fine Arts Museum) for an impressive art o b s
collection. el et ——

IYYYY 1
Packing list: ' nl 'H* 5 Bl
Based on your trip details, I'll create a packing list with essentials for a conference, ) d :1!’ ‘! 1
i A e Hore " " " u dl )
— —_—- - a

sightseeing, and enjoying the local culture. Here's a sneak peek:
* Business attire for the conference
* Comfortable walking shoes
* Power adapter for Argentina (Type Cand I)

* Sun protection (sunglasses, hat, sunscreen)

¢ Lightweight clothing for warm days
* Camera for capturing street art and landmarks
* Spanish phrasebook or translation app

| ot me know if vat'd like mae ta add aor madifv anvthina on thic lict!
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Understand where cycles go in your workloads

MAKE IT EFFICIENT




DLRMs, LLMs, Multi-Modal Generative Al Tasks

Recommendation

50%

of all Al Training Cycles

80%

of all Al Inference Cycles

2012 2018 2023

Deep Learning
Revolution

The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. Gupta et al. HPCA 2020.



DLRMs, LLMs, Multi-Modal Generative Al Tasks

Recommendation LLMs

5 0 0/0 Generative Al

of all Al Training Cycles _
Better quality

800/0 Improved content classification
of all AI Inference Cycles Conversational access to generation
2012 2018 2023

Deep Learning
Revolution

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/



DLRMs, LLMs, Multi-Modal Generative Al Tasks

Recommendation LLMs

5 0 O/O Generative Al

of all Al Training Cycles O( 1 Ok)

of Al accelerators

80%

of all Al Inference Cycles

2012 2018

Deep Learning
Revolution Meta’s GenAl Clusters

each with 24,000 GPUs

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/



LLMs with Distinct sttem Challenges

DLRM Llama-65B

1004+Xx

Training O(100 GF/iter) O(1 PF/sentence) B ger training clusters

Prefill: O(10 PF/s) for

time-to-first-token compute intensive
<1s

O(GF/s) for
100ms latency

Inference
Decode: Token generation

<50 ms memory intensive
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Compute

Real-time,
interactive response

O(TFLOPS)
compute capacity

Memory

Accelerator memory
limitation in
size & bandwidth
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Sustainability
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e2e carbon footprint
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Accelerators: Need for Seeed

Excessive inference latency on CPUs (>15s)

But ... accelerators are expensive and you may not
even be able to get it!

- Maximizing accelerator utilization: HW-SW co-design
- Improving e2e efficiency: system-level optimization




North Star

How do we provide best model quality at-scale by
making deployment viable?

(D
Boost Efficiency Re-Use "Embeddings” On-device
with Co-Design with Caching Al
Maximize Exploit repeated query Fast response,
performance per evaluation requests by improved privacy.
W/$/CO,e caching embeddings Stringent limits!

(MultiRay)



Accelerator Software/Hardware Co-Design

Reduced
Precision

Reduced precision FP

(FP16, BF16, F8, F6,

F5, F4!) for increased
compute density

Weight & Dynamic
Quantization

Quantization reduces
memory bandwidth and
memory needs with
higher compute density

Algorithmic
Improvements

Accelerated Transformers
with optimized Scaled
Dot-Product Attention

(SDPA + Flash Attention)




Over 10x Effective FLOPS growth (Weight-only Q.)

Llama-7B
E2e GPT-fast inference
244.7
200
SOTA 4-bit QSS.inference 202.1
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Accelerating Generative Al with PyTorch II: GPT, Fast, PyTorch Blog



MultiRay Caching: Re-use Processing with Embeddings

- Specialized models are costly

—  (Cost Per Inference) x (Num Content) x (Num Tasks)

« Most effort is spent on understanding the input Content

— How to re-use this work for different tasks? Analysis

- Embeddings!

— Input can be represented by embeddings, an intermediate result
of evaluating a model

embedding

- Centralized Universal Model -
— Input: Different media (text, images, video) Lo

Classifier1
— Output: Embedding assifier

downstream models



Layer Skip: Early Exit and Self-Speculative Decoding

Faster nrerence

Q1: How to make model predict tokens earlier?
Prior works - training with addl. early exit heads

=> higher memory footprint; longer training time

Our proposed design - Layer dropout with increasing rates across layers andearly exit loss
shared heads

Q2: How to ensure earlier predictions are correct?

Prior works - heuristics to predict when to exit
=> increasing model memory footprint; design complexity

Our proposed design - Self-speculative decoding: decode with earlier layers, verify/correct with
remaining layers

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A.Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.



Key Insight: Layer Skip LLMs are Supernets

* Training an LLM with layerskip gives us N different models at
different sizes and quality (where N == number of layers).

* Deployment and generation from these N models is also
simple because they are all just transformers!

Let’s use these smaller models within the LLM SuperNet to
give speculative decoding from the same model.

* We term this Self Speculation

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A.Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.



Self Speculation on Early Exit

* Make the draft model the first E layers
of the main model

 Lower memory need
. Do not need to store the second model
« Easier

. Choose which draft model to use trading
off accuracy and speed all by training a

single model
 Faster

. Verification can reuse the compute of the
first E layers (by the draft model)
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Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.



Laver Skip: Early Exit and Self-Speculative Decodin

Faster LLM Inference

Llama2 7B

Generation E d ROUGE-2

Token
Acc.

Tokens
per Sec.

Speedup

CNN-DM
One-Shot Abstractive Summarization

Autoregressive - - 0.079
Early Exit 8 - 0.012
Self Speculative 8 12 0.078

Draft and Verify n/a n/a

XSUM
Abstractive Summarization

68.9%

62.7
232.4
127.9

1.00x

1.86 ¥

Autoregressive - - 0.073
Early Exit 8 - 0.002
Self Speculative 8 12 0.073

54.6%

63.4
228.0
104.7

1.00%

1.54 X

Draft and Verify n/a n/a

HumanEval
Coding

Autoregressive - - 0.041
Early Exit. R - 0.003
Self Speculative 8 6 0.042

67.1%

62.9
2254

122.8

1.00x

1.83x

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovick
A.Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.

2404.16710v2 [cs.CL] 29 Apr 2024

arXiv

LayerSkip: Enabling Early Exit Inference and
Self-Speculative Decoding

Mostafa Elhoushi':':*, Akshat Shrivastaval''*, Diana Liskovich®!, Basil Hosmer!, Bram Wasti?,
Liangzhen Lai®, Anas Mahmoud®, Bilge Acun!, Saurabh Agrawal®, Ahmed Roman’, Ahmed A Aly®, Beidi
Chen!', Carole Jean-Wu'

IFAIR at Meta, 2GenAl at Meta, *Reality Labs at Meta, “University of Toronto, >Carnegie Mellon
University, University of Wisconsin-Madison, "Dana-Farber Cancer Institute
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We present LayerSkip, an end-to-end solution to speed-up inference of large language models (LLMs).
First, during training we apply layer dropout, with low dropout rates for earlier layers and higher
dropout rates for later layers, and an early exit loss where all transformer layers share the same exit.
Second, during inference, we show that this training recipe increases the accuracy of early exit at
earlier layers, without adding any auxiliary layers or modules to the model. Third, we present a novel
self-speculative decoding solution where we exit at early layers and verify and correct with remaining
layers of the model. Our proposed self-speculative decoding approach has less memory footprint than
other speculative decoding approaches and benefits from shared compute and activations of the draft
and verification stages. We run experiments on different Llama model sizes on different types of
training: pretraining from scratch, continual pretraining, finetuning on specific data domain, and
finetuning on specific task. We implement our inference solution and show speedups of up to 2.16 x
on summarization for CNN/DM documents, 1.82x on coding, and 2.0x on TOPv2 semantic parsing
task.

Date: April 30, 2024
Correspondence: Mostafa Elhoushi, Akshat Shrivastava

at melh« m

~~ ACL-2024

1 Introduction

Large Language Models (LLMs) have been deployed to many applications, yet their high compute and memory
requirements lead to high financial and energy costs when deployed to GPU servers Samsi et al. (2023).
Acceleration solutions do exist to deploy to commodity GPUs on laptops but they suffer from significant drop
in accuracy Zhu et al. (2023). Accelerating LLMs further to mobile or edge devices is still an active research
area Coplii et al. (2023); Liu et al. (2024). While a large portion of LLM acceleration approaches reduce
number of non-zero weights Xia et al. (2023) (a.k.a. sparsity), number of bits per weight Xiao et al. (2023)
(a.k.a. quantization), number of heads per layer Shim et al. (2021) (a.k.a. head pruning), a smaller portion
of approaches focus on reducing number of layers Fan et al. (2020); Elbayad et al. (2020). In this paper,
we explore reducing the number of layers required for each token by exiting early during inference. Unlike
quantization or sparsity, acceleration by reducing number of layers does not require specialized hardware or
software kernels.

Moreover, a popular research trend in LLM acceleration is speculative decoding Leviathan et al. (2023); Chen
et al. (2023) that has no drop in accuracy, where a large model, referred to as the main model, is accompanied
with a faster model, referred to as the draft model. The advantage of speculative decoding is that it leads
to faster inference compared to the main model, but requires a larger memory footprint and complexity in
implementation to maintain key-value (KV) cache in two different models. In addition to exiting early, this
paper also proposes combining exiting early with speculative decoding to propose a self-speculative decoding
approach that does not require an additional model or auxiliary layers.



CHAI: Clustered Head Attention for Efficient LLM Inference
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Find heads whose attention score is similar!

CHAI
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& « Key Observation: A high amt. of correlation
A+ across the output of various attention
heads in Multi-Head Attention - output of
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CHALI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.



CHAI: 1.73x Faster Prefill and 5x Faster Decoding

Method PIQA HellaSwag Arc-Challenge Arc-Easy BoolQ
MHA 79.8 76.1 47.5 72.8 76.0
DejaVu-10% -39  -4.7 -5.78 -3.18 -7.4
DejaVu-30% -13.3 -18.6 -18.75 4.2 -20.2
DejaVu-50% -24.6 -50.7 -19.35 -46.3 -21.6
SpAtten -414  -425 -18.0 -40.2 -27.1
CHAI-static -4.0  -4.3 -3.7 2.5 -0.8
CHAI 20 32 -0.5 0.3 0.1
Time to First Token (Prefill) Time to Next Token (Decoding)
El Time CHAI HEl Time CHAI
B Time MHA B Time MHA
_ _10°
(2} w
E10° E
o) @
- -
= Upto 1.73x F Upto 5x
2
10
2
107 g . m | mm -
128 256 512 1024 2048 128 256 512 1024 2048

Sequence Length

Sequence Length

CHALI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.



CHAI: Skewed Cluster Sizes (# of Attention Heads)
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CHALI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.



CHAI: Skewed Cluster Sizes (# of Attention Heads)
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CHALI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y.
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CHALI: Clustered Head Attention for Efficient LLM Inference

Saurabh Agarwal ' Bilge Acun’ Basil Hosmer? Mostafa Elhoushi? Yejin Lee? Shivaram Venkataraman '
Dimitris Papailiopoulos ! Carole-Jean Wu ?

Abstract

Large Language Models (LLMs) with hundreds of
billions of parameters have transformed the field
of machine learning. However, serving these mod-
els at inference time is both compute and mem-
ory intensive, where a single request can require
multiple GPUs and tens of Gigabytes of memory.
Multi-Head Attention is one of the key compo-
nents of LLMs, which can account for over 50%
of LLMs memory and compute requirement. We
observe that there is a high amount of redundancy
across heads on which tokens they pay attention to

Based on this insight, we |
Attention (CHAI). CHA
a high amount of correlati
runtime, thus reducing bot!
In our experiments, we st
to reduce the memory requirements for storing
K.V cache by up to 21.4% and inference time
latency by up to 1.73x without any fine-tuning
required. CHALI achieves this with a maximum
3.2% deviation in accuracy across 3 different mod-
els (i.e. OPT-66B, LLAMA-7B, LLAMA-33B)
and 5 different evaluation datasets.

1. Introduction

LLM:s have demonstrated remarkable performance on lan-
guage modelling tasks ranging from question answering,
text izing, 1 translati However, such per-
formance has been achieved by scaling models to trillions of
parameters, and existing works (Hoffmann et al., 2022; Tou-
vron et al., 2023a; Kaplan et al., 2020) show that increasing
the model size may lead to even higher model quality.

Inference on LLMs introduce several new challenges.
Beyond just the quadratic computation cost of self-
attention (Vaswani et al., 2017) with increasing context and
large model sizes, LLMs also store intermediate Key (K)
and Value (V) pairs for subsequent next word prediction.

!'University of Wisconsin-Madison “Meta-FAIR. Correspon-
dence to: Saurabh Agarwal <agarwal @cs.wisc.edu>.

ICML-2024

nethods of clus-
uence length of
‘hoose heads to
For Static Head
1 on activations.

This K,V caching introduces additional memory related
challenges as K,V cache size increases with increase in

q length. The archi of widely used LLMs
like GPT (Brown et al., 2020) and LLAMA (Touvron et al.,
2023a;b) use Multi-Head Attention (MHA) (Vaswani et al.,
2017). MHA uses several attention heads to look at a se-
quence. As models grow bigger, the number of heads in-
creases as well. For example, LLAMA-7B uses 32 attention
heads in each layer, while LLAMA-65B uses 64 attention
heads per layer (Touvron et al., 2023a). The use of MHA
exacerbates bottlenecks for serving LLMs. First, it increases
compute pressure due to repeated application of the atten-
tion operation. Second, it increases the memory pressure
due to requiring storage of Key (K), Value (V) caches that
comes with the additional attention heads. To alleviate
these bottlenecks, prior works have introduced primarily
two types of methods - (i) pruning of LLM:s to utilize spar-
sity based on the input context (Liu et al., 2023b; Voita et al.,
2019) and (ii) Co-designing of the Attention module to reuse
components across multiple heads like Multi-Query Atten-
tion (MQA) (Shazeer, 2019) and Grouped-Query Attention
(GQA) (Ainslie et al., 2023).

Pruning LLMs can potentially ease the compute bottleneck,
however it is challenging as the classical methods for prun-
ing (Frankle & Carbin, 2018; Chen et al., 2020b; You et al.,



Parallelizing ML Models on Distributed Systems

Embedding
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Efficiently scale model training with
more optlmal parallellzatlon strategles for dlstrlbuted systems
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Efficiently Accelerate Model Training on Distributed Systems

MAD-Max: a performance model for model parallelization design space exploration
- Model architectures
- Training system hardware — compute, memory, networking

Optimal parallelization results in an average of 65.9%

(upto 2.24x) training throughput improvement

Pre-training System Performance

3 3 . Normalized Throughput
% = Normalized Throughput (no memory constraints)
o 2.04
£°7 |
b FSDP.__1.14 1.09 1.11 57 1.00 1.34 — 1.00
N 1 - . TS
©
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MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems. S. Hsia, A. Golden, B. Acun, N. Ardalani, Z. DeVito, G.-Y. Wei, D. Brooks, C.-J. Wu.
ISCA 2024.



Normalized Throughput

Efficiently Accelerate Model Training on Distributed Systems
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MAD-Max Beyond Single-Node: Enabling Large
Machine Learning Model Acceleration on
Distributed Systems
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scale ML models on state-of-the-art GPU dusiers, we showcase
ial h of up to 2.24x for pre-
scenarios, respecti

training and up to 5.27x for infe

I. INTRODUCTION

Billion-parameter large language models (LLMs) [9], [49],
[61], [62] power applications that have shown far-reaching
impact across different domains [15], [16], [38], [48]. Sim-
ilarly, trillion-parameter recommendation models [40], [72]
have demonstrated state-of-the-art user modeling and content
understanding across search [6], [11], [31], [76], social me-
dia [1], [18], [19], [71], e-commerce [78], [79], and entertain-
ment [20]. As these large-scale ML models increase in size and
complexity [18], [19], the corresponding training and infer-
ence workloads become ever more resource-intensive. Without
efficient mappings between these large-scale ML workloads
and their underlying distributed systems, model training and
exploration can easily require millions of GPU hours levying
high operational costs, i and

Elapsed Hours
per 1B samples

Fig. 1. Our performance model - MAD-Max — improves upon lhe resource-
performance pareto frontier of largs le ML by i ying new
hardware-software mappings and solutions.

resource-performance pareto frontier requires researchers to
take into account underlying distributed systems [14], [28]-
[301, [42], [43], [45], [46] and how we map models and tasks
onto underlying distributed systems — parallelization strategy.
In this paper, we propose a distributed ML performance
model — MAD-Max - for identifying potential avenues for
improvement (green, dotted line). Nonetheless pmpomnng
the specific distributed sy and paralleli on

needed for realizing these 1mpmvemems in performance and

resource requi is ing, as

evid d by the three general approaches for optimizing

energy consumption [9], [61] [62].

Figure 1 shows the projected resource-performance pareto
frontier of training a state-of-the-art deep learning recom-
mendation model (DLRM) using default workload-system
mapping strategy on public cloud mstances In this case,
we quantify p with aggregate
GPU hours per 1 billion samples where aggregate GPU
hours of different generations of GPUs are normalized based
on the A100’s peak FLOPS. Further improving upon this

runtime performance of large ML models.

The first option involves applying industry-standard par-
allelization strategies (Figure 1: blue, dotted line) that tar-
get feasibility without fully optimizing hardware usage (e.g.,
FSDP [54], [75]). The second option is to custom-design cus-
tom hierarchical parallelization strategies specific to the model,
task, and system [59]. This maximizes hardware efficiency
but is plex from an engi ing dpoint and not easily
adaptable across different tasks. The third option is to use

for model parallelization design space exploration

Ipute, memory, netvmrslzinr1

lon results in an

ing throughput MAD-Max pushes the pareto

frontier of performance & energy use
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Efficiency Optimization in O(100)

But jevonls Baraaox

1.2

Improved efficiency increases use
18% power footprint increase
despite 800+ times efficiency improvement

1.1

Operational Power Footprint

Universal Language Model / 2021

Yr1-H1 Yr1-H2 Yr2-H1 Yr2-H2

Sustainable Al: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.



Embodied CO,e

An underexplored aspect of computing

Manufacturing Product Use Recycling
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The chip industry’s dirty little secret:
It’s very dirty
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Embodied CO,e is Significant

Manufacturing ‘f
account for

> 33% of emissions
(SoCs, DRAMs, NAND Flash)

Integrated Circuit
Manufacturing

accounts for 74% of
Apple’s end-to-end
breakdown in 2019

Business travel
Recycling

Product transport

Product use account for 19%
macOS Idle of emissions

macOS Active

Product Use

Displays

—

Steel  Assembly

Electronics

Chasing Carbon: The Elusive Environmental Footprint of Computing. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu.
HPCA 2021. IEEE Micro Top Picks.



Bringing Supercomputing Technologies On-Device

® Scale with user count
e Real-time latency
e Data ownership £apIop
e Disconnected operation
® Privacy
Embedded

VR/MR




Designing Computer Systems for Sustainability

What does sustainability-first
computing look like?
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