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>1, 000,000x+ Transistors

750x Faster

O(10k) GPUs Domain-Specific Acceleration

Decades of Innovations in Computer Systems

Vertical Scaling Horizontal Scaling Specialization



Efficiency Keeps Computing’s Energy Growth ~O(1)

550% increase 6% increase

Recalibrating global data center energy-use estimates. Masanet et al. Science 2020.



Computing Industry Faces an Unprecedented Growth

Open Catalyst AlphaFold FarmBeats

Artificial Intelligence

Carole-Jean Wu



Computing’s Energy Footprint
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Exponential Growth Trend of AI
Data, Model Sizes, System Infrastructures

Experimentation Training InferenceData

Production Data Size 
2+ times / 2019-21

Recommendation Model Size 
20+ times / 2019-21

Training and Inference Infrastructure
2+ times / 2019-21

Terabyte



AI’s Operational CO2e
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Sustainable AI: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.

AI model development lifecycle

• Offline training

• Online training

• Inference

Circa 2021
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2024?



MAKE IT EFFICIENT
Understand where cycles go in your workloads



DLRMs, LLMs, Multi-Modal Generative AI Tasks

2012 2018

Deep Learning
Revolution 

50% 
of all AI Training Cycles 

80% 
of all AI Inference Cycles 

2023

Recommendation 

The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. Gupta et al. HPCA 2020.



https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

DLRMs, LLMs, Multi-Modal Generative AI Tasks

2012 2018

Deep Learning
Revolution 

50% 
of all AI Training Cycles 

80% 
of all AI Inference Cycles 

2023

Recommendation LLMs 
Generative AI

Better quality

Improved content classification

Conversational access to generation



https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/

DLRMs, LLMs, Multi-Modal Generative AI Tasks

2012 2018

Deep Learning
Revolution 

50% 
of all AI Training Cycles 

80% 
of all AI Inference Cycles 

2023

Recommendation LLMs 
Generative AI

O(10k)
of AI accelerators

Meta’s GenAI Clusters
each with 24,000 GPUs



memory intensive

LLMs with Distinct System Challenges

DLRM Llama-65B

Training O(100 GF/iter) O(1 PF/sentence)

Inference

O(GF/s) for 
100ms latency

Prefill: O(10 PF/s) for 
time-to-first-token

<1s 

Decode: Token generation 
<50 ms

compute intensive

100+x
larger training clusters



Scaling Challenges for LLMs

Compute

Real-time, 
interactive response 

O(TFLOPS) 
compute capacity

Memory

Accelerator memory 
limitation in 

size & bandwidth 

Sustainability

Scalability
TCO, OpEx, CapEx 

e2e carbon footprint 
optimization



Accelerators: Need for Speed

Excessive inference latency on CPUs (>1s)

But … accelerators are expensive and you may not 
even be able to get it!

• Maximizing accelerator utilization: HW-SW co-design
• Improving e2e efficiency: system-level optimization



North Star

How do we provide best model quality at-scale by 
making deployment viable? 

Boost Efficiency 
with Co-Design

Maximize 
performance per 

W/$/CO2e

Re-Use “Embeddings” 
with Caching 

Exploit repeated query 
evaluation requests by 
caching embeddings 

(MultiRay)

On-device
AI

Fast response, 
improved privacy. 
Stringent limits! 



Accelerator Software/Hardware Co-Design

Reduced
Precision

Reduced precision FP 
(FP16, BF16, F8, F6, 
F5, F4!) for increased 

compute density

Weight & Dynamic 
Quantization

Quantization reduces 
memory bandwidth and 

memory needs with 
higher compute density

Q
32b ⇢ 4b

Algorithmic 
Improvements

Accelerated Transformers 
with optimized Scaled 
Dot-Product Attention 

(SDPA + Flash Attention)



Over 10x Effective FLOPS growth (Weight-only Q.)

E2e GPT-fast inference 

Accelerating Generative AI with PyTorch II: GPT, Fast, PyTorch Blog



MultiRay Caching: Re-use Processing with Embeddings

• Specialized models are costly
– (Cost Per Inference) x (Num Content) x (Num Tasks)

• Most effort is spent on understanding the input
– How to re-use this work for different tasks?

• Embeddings!
– Input can be represented by embeddings, an intermediate result 

of evaluating a model

• Centralized Universal Model
– Input: Different media (text, images, video)

– Output: Embedding

– Embeddings power decisions of simpler 
downstream models

Content
Analysis

input

embedding

Classifiern
Classifier3

Classifier2
Classifier1



Layer Skip: Early Exit and Self-Speculative Decoding 
Faster LLM Inference

Q1: How to make model predict tokens earlier?
 Prior works – training with addl. early exit heads
  => higher memory footprint; longer training time
 
 Our proposed design – Layer dropout with increasing rates across layers and early exit loss 

shared heads

Q2: How to ensure earlier predictions are correct?
 Prior works – heuristics to predict when to exit
  => increasing model memory footprint; design complexity
 
 Our proposed design – Self-speculative decoding: decode with earlier layers, verify/correct with 

    remaining layers

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.



Key Insight: Layer Skip LLMs are Supernets

• Training an LLM with layerskip gives us N different models at 
different sizes and quality (where N == number of layers).

• Deployment and generation from these N models is also 
simple because they are all just transformers!

Let’s use these smaller models within the LLM SuperNet to 
give speculative decoding from the same model.

• We term this Self Speculation

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.



Self Speculation on Early Exit

Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.

• Make the draft model the first E layers 
of the main model

• Lower memory need 
• Do not need to store the second model

• Easier
• Choose which draft model to use trading 

off accuracy and speed all by training a 
single model

• Faster
• Verification can reuse the compute of the 

first E layers (by the draft model)



Layer Skip: Enabling Early Exit Inference and Self Speculative Decoding. M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. Aly, B. Chen, C.-J. Wu. ACL-2024.

ACL-2024

Layer Skip: Early Exit and Self-Speculative Decoding 
Faster LLM Inference



CHAI: Clustered Head Attention for Efficient LLM Inference

CHAI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.

CHAI
• Key Observation: A high amt. of correlation 

across the output of various attention 
heads in Multi-Head Attention – output of 
several attention heads focuses on same 
token

Find heads whose attention score is similar!



CHAI: 1.73x Faster Prefill and 5x Faster Decoding

CHAI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.

Time to First Token (Prefill) Time to Next Token (Decoding)

Upto 1.73x Upto 5x



CHAI: Skewed Cluster Sizes (# of Attention Heads)

CHAI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.



CHAI: Skewed Cluster Sizes (# of Attention Heads)

CHAI: Clustered Head Attention for Efficient LLM Inference. S. Agarwal, B. Acun, B. Hosmer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu. ICML-2024.

ICML-2024



Parallelizing ML Models on Distributed Systems

Embedding
MLP Partial SumTotal Sum

Efficiently scale model training with 
more optimal parallelization strategies for distributed systems



Efficiently Accelerate Model Training on Distributed Systems

MAD-Max: a performance model for model parallelization design space exploration
• Model architectures
• Training system hardware – compute, memory, networking 

Optimal parallelization results in an average of 65.9% 
(upto 2.24x) training throughput improvement 

MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems. S. Hsia, A. Golden, B. Acun, N. Ardalani, Z. DeVito, G.-Y. Wei, D. Brooks, C.-J. Wu. 
ISCA 2024.

FSDP



Efficiently Accelerate Model Training on Distributed Systems

MAD-Max: a performance model for model parallelization design space exploration
• Model architectures
• Training system hardware – compute, memory, networking 

Optimal parallelization results in an average of 65.9% 
(upto 2.24x) training throughput improvement 

MAD-Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems. S. Hsia, A. Golden, B. Acun, N. Ardalani, Z. DeVito, G.-Y. Wei, D. Brooks, C.-J. Wu. 
ISCA 2024.

Training time

En
er

gy

MAD-Max pushes the pareto 
frontier of performance & energy use 

of large ML models

DLRM-A Architectures & Hardware & Parallelization

FSDP

Day 2 -- Tuesday July 2
10:05 – 11:20 am

Session 6C Parallel Architectures
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Improved efficiency increases use
18% power footprint increase 

despite 800+ times efficiency improvement

Efficiency Optimization in O(100)
But Jevon’s Paradox

Universal Language Model / 2021

Sustainable AI: Environmental Implications, Challenges and Opportunities. Wu et al. MLSys-2022.



Embodied CO2e

An underexplored aspect of computing 



Chasing Carbon: The Elusive Environmental Footprint of Computing. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin Lee, Gu-Yeon Wei, David Brooks, Carole-Jean Wu. 
HPCA 2021. IEEE Micro Top Picks.

Embodied CO2e is Significant

Integrated circuits account for 
33% of emissions

(SoCs, DRAMs, NAND Flash)

Product use account for 19% 
of emissions



Bringing Supercomputing Technologies On-Device

● Scale with user count
● Real-time latency
● Data ownership
● Disconnected operation
● Privacy



Tuesday 4:15 – 5:15pm July 2, 2024


