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The size of Large Language Models grows exponentially.
• Factor of 1000× between 2018 (Elmo) to 2020 (GPT-3).
• The generative AI era demands even larger models.

State-of-the-art models can no longer fit inside single GPU.
Hundreds/thousands GPUs are required to train them.
• Expensive infrastructure, out-of-reach for most researchers.
• Significant environmental impact.

Fine-tuning has become famous for efficiently adapting pre-trained 
models for specific tasks, compared to training from scratch. 

As the model size increases, fine-tuning demand even more resources.

Graphics Processing Units are popular accelerators for AI/ML.
• Only see 5× increase in memory capacity between 2018 (V100) 

to 2020 (A100).

GPT-4
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1
obj Summarize and compare standard, LoRA, and QLoRA fine-tuning methods.

2
obj Estimate the GPU memory requirement for each fine-tuning method using different data precision.

3
obj Measure fine-tuning performance on three GPUs: NVIDIA A100, H100, and L40.

4
obj Measure resource utilization (CPU memory, GPU memory) for each fine-tuning method. 

5
obj Evaluate the model quality from each fine-tuning method with different data precision.
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Standard Fine-tuning
• Adapting pre-trained models for 

specific tasks by exposing them to 
more specific datasets.

• Save time, resources, and energy 
compared to training from scratch.

Low-Rank Adaptation (LoRA)
• Aghajanyan et. al. showed that pre-trained models have 

significantly lower intrinsic dimensions during fine-tuning.
• There exists a lower dimension representation of the model.

• Fine-tuning is more demanding 
as the size of models grows.

• Needs to find more efficient way.

Fine-tuning flow Alternative flow

• Microsoft proposed efficient fine-tuning 
method called Low-Rank Adaptation 
(LoRA). 

• Replaces Weight Update matrix with 
two smaller matrices (LoRA Adapter).
• Rank r is hyperparameter that 

controls how large LoRA matrices.
• Provide trade-off between model 

complexity, adaptation ability, fine-
tuning costs.

• Pre-trained weights are frozen (not 
updated) during fine-tuning.
• Only adapters are updated. 



ARC-LG Workshop on Large Language Models and Graph Neural Networks @ ISCA 2024, June 30th, 2024, Buenos Aires, Argentina 

Quantized Low-Rank Adaptation (QLoRA)

9

4-Bit Weight Quantization
• Introduced two 4-bit floating-point data types for 

storing pre-trained model’s weight in memory:
• 4-bit floating-point format (FP4)
• 4-bit normalized floating-point format (NF4)
• Information-theoretically optimal data type.
• Each quantization bin has equal values based on 

empirical cumulative distribution.
• Computation is still done in FP32/BF16 (“dequantize”)

Double Quantization

Paged Optimizer

• Even with LoRA, the frozen weight matrix can still be 
very large and beyond the capacity of single GPU. 

• QLoRA was introduced by Dettmers et. Al. in 2023 to 
significantly reduce memory requirements of LoRA.

• Improved LoRA with three major innovations:

• Quantize the quantization constant.
• Two levels of quantization:
• Level 1: One FP32 constant per 64 values.
• Level 2: One FP8 constant per 256 constant.
• Quantization overhead: 0.127 bits/parameter

• Use NVIDIA Unified Virtual Memory to use both 
CPU and GPU memory to store optimizer states.

• Degrade performance due to data movement.
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Hardware Setup
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• Three state-of-the-art NVIDIA GPUs: 
• NVIDIA A100 (Ampere) 80GB SXM4 with NVLink
• Housed inside Dell XE9680 8-way GPU chassis
• NVIDIA H100 (Hopper) 80GB with NVLink
• Housed inside Dell XE9680 8-way GPU chassis
• NVIDIA L40 (Ada Lovelace) 48GB PCIe.
• Housed inside Dell R760xa chassis

XE9680 R760xa
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Large Language Model
• Four different models, each with two sizes:
• small (7 billion parameters)
• large (> 40 billion parameters)

Dataset
OpenAssistant Conversation Dataset (OASST1)

Software Stack
• NVIDIA Driver 535.86 with CUDA 12.2 
• PyTorch 2.2.0 build from source.
• HuggingFace Transformers
• Provides APIs for quickly interacting with pre-

trained models.
• HuggingFace Evaluate
• Provides tools for evaluating and comparing 

model’s performance.
• HuggingFace Accelerate
• Provides abstraction to run PyTorch in any device, 

including Multi-GPU.
• DeepSpeed ZeRO
• Alternative to HuggingFace Accelerate, providing 

multi-GPU with data-parallelism.
• BitsandBytes
• 4-bit and 8-bit quantization for QLoRA.

Model Quality Evaluation
Massive Multitask Language Understanding (MMLU)
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Parameters (Trainable / Frozen) Approximate Memory Usage Remarks
• For LoRA and QLoRA, only the 

adapters are trainable; the pre-
trained weight is frozen.
• Frozen parameters do not need 

optimizers & gradients.
• For QLoRA, two 4-bit parameters 

are packed into 1 byte.
• PyTorch counts two quantized 

parameters as one.
• Standard fine-tuning requires 

memory larger than single 
A100/H100 80GB.
• Needs multiple GPUs.
• LoRA allows single L40 48GB GPU 

to fine-tune these models.
• QLoRA further reduce memory 

requirements by 75%.
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Estimating Memory Usage (>40 Billion Parameter Models)
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Parameters (Trainable / Frozen) Approximate Memory Usage Remarks
• Standard Fine-tuning will require 

~16 NVIDIA A100/H100 80GB 
GPUs.

• LoRA could no longer fit the 
model into single A100/H100 80GB 
GPU for fine-tuning. 

• QLoRA is able to fit the model 
into single A100/H100 80GB GPU.
• It even gives a chance to use 

single L40 48GB GPU for fine-
tuning.
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Time to Fine-tune 2048 Steps (s) Remarks
• Standard Fine-tuning performance:
• Single GPU is not sufficient, optimizer states 

must spill over to CPU memory.
• L40 48GB got the worst impact of excessive 

CPU-GPU data movement due to small memory.
• Multi-GPU fine-tuning with HF Accelerate:
• Four L40 48GB GPUs get the highest benefit.
• Using four and eight A100/H100 80GB GPUs 

do not give improvement due to inter-GPU 
communication overhead.

• Multi-GPU fine-tuning with DeepSpeed ZeRO:
• Worse performance than HF Accelerate.

• LoRA gives better performance than standard 
fine-tuning, especially for L40 48GB.
• QLoRA gives slightly worse performance than 

LoRA due to the overhead of quantization.
• QLoRA with BF16 gives a slightly lower 

performance than QLoRA FP16.
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Time to Fine-tune 2048 Steps (s) Remarks

• Standard Fine-tuning performance:
• Single GPU no longer sufficient, even with 

paged optimizer.
• Multi-GPU fine-tuning with HF Accelerate:
• Allows standard fine-tuning on four and eight 

A100/H100 80GB GPUs.
• Multi-GPU fine-tuning with DeepSpeed ZeRO:
• ZeRO-2 is not sufficient; need to use ZeRO-3 

with offload. 
• LoRA with FP16 is still too big for single GPU, 

even for A100/H100 80GB.
• QLoRA allows fine-tuning in FP16/BF16 with 

single A100/H100 80GB GPU.
• Only QLoRA with BF16 can fit the model on L40 

48GB.
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Average Accuracy (standard vs. LoRA vs. QLoRA)

QLoRA Mixed Precision FP16 vs. BF16

QLoRA FP4 vs. NF4 Quantization

QLoRA Single vs. Double Quantization

• For Llama2 7B:
• Standard gives average accuracy 0.24.
• LoRA & QLoRA gives average 0.42 and 0.49.
• For WizardLM 7B:
• LoRA and QLoRA gives on-par accuracy with 

standard fine-tuning.
• Other models show the same trends.

• Note that QLoRA with FP16 is actually run on 
FP32 precision.
• Underlying CUDA library uses TF32 instead of 

FP32 to take advantages of Tensor Cores.
• QLoRA FP16 is slightly faster than BF16.
• QLoRA BF16 has slightly lower memory than 

FP16.

• NF4 achieves slightly better accuracy score 
than FP4: up-to 4% higher average score, 
depending on the model.

• NF4 introduces more computation overhead 
due to empirical distribution quantization, 
resulting in 4%-5% longer fine-tuning time.

• Single and Double quantization achieves roughly 
the same accuracy score.

• Double quantization saves memory usage by 
up-to 5%.
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• Model Fine-tuning:
• Standard fine-tuning is no longer viable for handling state of the art models; finding 

efficient fine-tuning method is required.
• Low-Rank Adaptation (LoRA) and Quantized LoRA (QLoRA):
• Since models have low intrinsic dimensions during fine-tuning, one can represent the model 

with smaller matrices (“LoRA Adapter”) without losing too much information.
• Even with LoRA, large models may still need huge memory requirements exceeding single 

GPU memory capacity. 
• QLoRA improves LoRA with three innovations: Four-bit quantization, Double Quantization, 

and Paged Optimizers.
• Fine-tuning Performance
• QLoRA allows fine-tuning models with >40 billion parameters using single GPU at the 

expense of more computation due to quantization compared to LoRA.
• Model Quality
• QLoRA delivers model quality that is on par or exceed the standard fine-tuning.
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