
LLM-VeriPPA: Power, Performance, and Area-aware
Verilog Code Generation and Refinement with Large

Language Models

Kiran Thorat, Jiahui Zhao, Yaotian Liu, Hongwu Peng, Xi Xie, Bin Lei,
Jeff Zhang, Caiwen Ding

1

Outline

• Digital Chip Design
• LLM for EDA
• Related work
• Framework: LLM-VeriPPA
• Error Rectification
• Multi-round conversation with Error feedback

• Experiment results
• PPA
• PPA-optimization
• PPA Results

• Language construction coverage
• Conclusion

2

Digital Chip Design

RTL to Boolean
functions

Technology
independent-
optimizations

Technology
Mapping

Gate Level
Design

System
specifications

Architectural
Design

Functional and
Logic Design

Logic
Synthesis

Physical Design

Fabrication

Packaging
PPA rpt

• Moore’s law drives complexity and scalability in
modern chip design

• EDA tools used to address the challenges
• EDA- Time consuming, resource intensive, requires

domain knowledge.

Modern chip design flow

3

LLM for EDA

• LLM demonstrated various capabilities [1]
• Comprehension
• Reasoning
• Instruction following
• Coding

• HDL languages:
• Instruction
• Intermediate outputs
 are text format

1. Minaee, Shervin, et al. "Large language models: A survey." arXiv preprint arXiv:2402.06196 (2024).

4

Related Work
• RTLLM [2]:

• RTLLM uses a self-planning process, i.e., designing prompts to ask LLMs to write Verilog
and then advice on how to avoid syntax errors to improve correctness.

• The self-planning does not contain the exact error details to improve the correctness of the
generated codes.

• does not have the capability of PPA optimization to meet the application-specific
requirements.

• Verilog Eval [3]:
• Mainly focus on the dataset generation (156 hardware-designs)
• Does not provide any PPA results

2. Lu, Yao, et al. "Rtllm: An open-source benchmark for design rtl generation with large language model."
2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2024.
3. Liu, Mingjie, et al. "Verilogeval: Evaluating large language models for verilog code generation."
2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023 5

Framework: Veri-PPA

• Two Stage checks:
• Syntax and functionality
• PPA

6

Error Rectification Flow

• Error rectification steps:
• Hardware description prompt
• LLM generated
Verilog code
• Veri rectify-
refinement
• LLM generated
 Verilog code

Error details from simulator:
Syntax	Errors
multi_booth_generated.v:10:	error:	'p'	
has	already	been	declared	in	this	scope.
multi_booth_generated.v:6:						:	It	was	
declared	here	as	a	net.
multi_booth_generated.v:13:	error:	'rdy'	
has	already	been	declared	in	this	scope.
multi_booth_generated.v:7:						:	It	was	
declared	here	as	a	net.
Functionality	Error
/multi_booth/testbench.v:67:	invalid	
file	descriptor	(0x0)	given	to	$fscanf

Please	act	as	a	professional	verilog designer.	
Implement	an	8bit	booth-4	multiplier.	

During	the	reset	condition	(reset	signal	is	
high),	the	module	initializes	the	registers	and	
signals:rdy is	set	to	0	to	indicate	that	the	
multiplication	operation	is	not	yet	complete.	p	
is	set	to	0	to	clear	the	product	register.	ctr	is	
set	to	0	to	reset	the	counter.	multiplier	is	set	to	
the	sign-extended	value	of	the	a input,	where	
the	most	significant	bit	of	a	is	replicated	to	the	
left	8	bits	of	multiplier.	multiplicand	is	set	to	
the	sign-extended	value	of	the	b	input,	where	
the	most	significant	bit	of	b	is	replicated	to	the	
left	8	bits	of	multiplicand.

During	the	non-reset	condition,	the	module	
performs	the	Booth	multiplication	algorithm:If
the	counter	ctr	is	less	than	16,	the	module	
shifts	the	multiplicand	register	to	the	left	by	1	
bit	(multiplicand	<=	multiplicand	<<	1).If	the	
current	bit	of	the	multiplier	at	position	ctr	is	1,	
the	module	adds	the	shifted	multiplicand	to	
the	p	register	(p	<=	p	+	multiplicand).The	
counter	ctr	is	incremented	by	1	in	each	clock	
cycle.	Once	the	counter	ctr	reaches	16,	the	
multiplication	operation	is	complete,	and	the	
rdy signal	is	set	to	1	to	indicate	readiness.

Module	name:			multi_booth

Input	ports：input clk,	reset;		input	[7:0]	a,	b;

Output	ports：output [15:0]	p;	output	rdy;

module	multi_booth(
input	clk,	input	reset,	input	[7:0]	

a,
input	[7:0]	b,	output	[15:0]	p,
output	rdy

);
reg	[15:0]	p;
reg	[15:0]	multiplier;
reg	[15:0]	multiplicand;
reg	rdy;
reg	[4:0]	ctr;
always	@(posedge clk,	posedge
reset)	begin
if	(reset)	begin

…
end	else	begin

//	Non-reset	condition
….

endmodule

Error	Details:	
multi_booth_generated.v:10:	error:	
'p'	has	already	been	declared	in	
this	scope.
multi_booth_generated.v:6:						:	It	
was	declared	here	as	a	net.
multi_booth_generated.v:13:	error:	
'rdy'	has	already	been	declared	in	
this	scope.
multi_booth_generated.v:7:						:	It	
was	declared	here	as	a	net.
multi_booth/testbench.v:67:	
invalid	file	descriptor	(0x0)	given	
to	$fscanf.

Hint:

Please	see	the	errors	in	previously	
generated	code.	Please	write	entire	
code	by	fixing	the	errors	in	previous	
code.	Do	not	write	testbench.	Please	
only	give	me	the	code,	for	anything	
beside	code	please	properly	
comment	it	out.

Hardware Design Description Prompt (L)
LLM Generated Verilog

Code (V0)
VeriRectify : Error refinement LLM Generated Verilog Code

(V1)
module	multi_booth(
input	clk,
input	reset,
input	[7:0]	a,
input	[7:0]	b,
output	reg	[15:0]	p,
output	reg	rdy

);
reg	[15:0]	multiplier;
reg	[15:0]	multiplicand;
reg	[4:0]	ctr;
always	@(posedge clk,	posedge
reset)	begin
if	(reset)	begin
//	Reset	condition
rdy <=	0;
p	<=	0;
ctr	<=	0;
multiplier	<=	{{8{a[7]}},	a};
multiplicand	<=	{{8{b[7]}},	b};

end	else	begin
//	Non-reset	condition
if	(ctr	<	16)	begin
multiplicand	<=	multiplicand	<<	

1;
end
if	(multiplier[ctr]	==	1)	begin
p	<=	p	+	multiplicand;

end
ctr	<=	ctr	+	1;
if	(ctr	==	16)	begin
rdy <=	1;

end	end	end
endmodule

7

Multi-round Conversation with Error Feedback

• Process:
• Hardware description
• Initial Verilog code and errors (V0,E0)
• VeriRetify R(V0, E0)
• LLM generated Verilog code (V1)
• Corresponding Error (E1)
• VeriRetify R(V1, E1)
• Loop for until we get correct code
 or 4 attempts

8

Experiment results

• Dataset: RTLLM
• Commercial-Model: GPT

• Open-source: Llama

9

Experiment results

• Dataset: Verilog Eval
• GPT-Model results:

10

Power Performance and Area (PPA) in Chip Design

• Power: Lowers energy usage and heat, essential for device longevity and
performance.

• Performance: Boosts processing speed, crucial for high-demand applications.
• Area: Reduces chip size, cutting costs and enabling more compact designs.
• Need to meet the application specific requirements

• PPA needs optimization !

Example: Cryptographic hardware,
requires fast clock, largely adders.
Adder_32 bit: 500 ps, 14.7uW,
213.2 Um^2

11

PPA-Optimizations

• PPA-optimization process
• Correct designs
• Non-optimized PPA
• In-context learning
• Pipelining
• Clock Gating
• Parallel
optimization
• Adding Hierarchy

• PPA-aware Prompt
• Optimized PPA results

12

Experiment results PPA

• Results

Optimized PPA

Non-optimized PPA

13

Language construction coverage

• The LLM generated Verilog codes language coverage statistics

14

Conclusion

• We introduce a novel framework VeriPPA, designed to assess and enhance LLM
efficiency in this specialized area

• The first stage focuses on improving the functional and syntactic integrity of the code,
while the second stage aims to optimize the code in line with Power-Performance-Area
(PPA) constraints, an essential aspect of effective hardware design.

• Our framework achieves 62.0% (+16%) for functional accuracy and 81.37% (+8.3%) for
syntactic correctness in Verilog code generation, compared to SOTAs.

15

16

