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Intruduction to LLLMs and KV cache



The era of LLMs

* More companies are launching LLM models, expanding the Al landscape. [1]
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[1] A Survey of Large Language Models (https://arxiv.org/pdf/2303.18223)



LLM Inference Process

 Two stages:
»  Prefill: first iteration, compute all input tokens in a single pass
* Decode: utilize previous generated token as input

* Regressive generation

» Layer by layer
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Self-Attention & KV cache
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Serving LLMs 1s Expensive

» Compute Sensitive (large model parameters)
¢ LLMs run on high-end GPUs such as Nvidia A100

*  Each GPU can only serve a handful of requests per second

. For LLaMA-13B and moderate size inputs, 1 A100 can process <1 requests per second
*  Aton of GPUs are required for production-scale LLM services.
« Large KV cache size

KV cachesize: 2 * seq_len » hidden_size * sizeof (TYPE)
 For LLaMA-13B and A100 GPUs, the generated KV cache takes close 30% of the HBM.
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Motivation and Challenges of CaR



Opportunity for KV cache reuse

* The related KV cache is directly discarded once the request is completed.

* Scenarios with similar prefix tokens

. Few-shot aibot

User 1 [ Few-shot examples M Q1 M Al ]

. Multi-turn chat

User 2 [ Few-shot examples M Q1 M Al ]

*  Tree of thoughts

User 3 { Few-shot examples M Q1 M Al J

Branch 1 H Branch 1

[ Search History [ Branch 1.1 H Branch 1.1 ]

]
1
[ Search History M Branch 1.2 M Branch 1.2 } Turn 1
J
1

Branch 2 H Branch 2 Turn 2 [ History M Q2 ][ A2 ]

[ Search History [ Branch 1.2 M Branch 1.2 ] Turn 3 [ History M Q3 ][ A3 ]
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LLM models are developed to support longer contexts.
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Motivation

»  The expensive computation in the prefill stage can be avoided by reusing the KV cache from the
previous requests.
*  The large KV cache storage has become a bottleneck in LLM inference.
*  Multi-tier Memory System
*  Active blocks are stored in HBM of GPUs.

e Inactive blocks are stored in external Mem. Model
parameters
SMs

Others

KV cache

GPUs




Challenges in Multi-tier KV Cache System

*  Where to place the KV cache of previous requests?
*  The HBM on GPUs is small and fast.
*  The CXL-based external memory is large but slow.
*  How to limited the data transfer overhead?
*  Maximize the use of KV cache in HBM of GPUs
*  Avoid frequent data transmission between GPUs and CXL
*  When to migrate the data across the tiers?
*  Avoiding the GPU stall waiting for the data to be loaded from CXL-based memory.

*  Avoid prefetch too early.
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Design Details of CaR System



Overview of CaR System

* Co-design of Scheduler and Cache CPU

KV-Cache Manager Request

Queue
Management' Cache Replacement Policy

* Replacement Policy
- l«— Cache-Aware
 Cache -Aware Scheduler Scheduler

Request Batch |Response

*  Prefetch Predictor ‘ v

LLM

*  Quality-aware Compression algorithm. LM
oage

Quality-aware
Sparsification

* Pipeline data loading and asynchronous

GPU

offloading



Co-design of Scheduler and Cache Management

Maximizing KV cache reuse requires avoiding task
waiting caused by frequent data offloads and

prefetches.
Scheduler New Coming Requests Shuffled Window
* Use shuffle windows to categorize requests into 10 (|| | | | 00

three groups.
* A fixed size window is used to prevent frequent

changes in the order of requests.

Cache table 1]

NodelD | Addr Valid_in_GPU | Size | Score v

e Standard: — ’ .
. The size of KV cache to be transmitted from epP::’cI?cn;en «— Prefetcher
CXL to GPUs

* Highest: the needed KV cache already in the
HBM.

* Second: do not involve any historical KV caches.

* Lowest: The size of KV cache to be prefetched



Co-design of Scheduler and Cache Management

* Replacement Policy
*  Determine which block of KV cache need to be
offload when HBM is full.
* Avoid the deletion of the KV cache that is relied
by active requests. New Coming Requests Shuffled Window

0| | 1000

* Use Score to target the KV cache blocks.
* Standard: evict the memory block with the

smallest score Cache table
) NodelD | Addr Valid_in_GPU | Size | Score

*  When a request enter to shuffled windows, the RePI':"i?me“t . «—{ Prefetcher
score of related blocks adds 1 oy

*  When a request enter to GPU for inference, the
score of related blocks adds 1

*  When a request complete it’s inference, the
score of related blocks subs 2



Co-design of Scheduler and Cache Management

e Prefetch Predictor

* Determine when to start prefetch the related KV cache of the first priority requests in shuffled
window.

*  Predict when the GPUs need to load a new requests from the queue.
e [2] utilize the LLM model to predict the output sequence length. (number of decode
iterations)
* N represent the total number of requests currently being handled on GPUs.
* T donate the current time.
* len,; is the predicted sequence length for request i.
» SIZE is the size of the KV cache need to be fetched.

fet(h(t) — ]IminoS,-SN{TPOPXleni—(t—timeri)}g% (t)

[2] Response length perception and sequence scheduling (https://arxiv.org/pdf/2305.13144)



Quality-aware Compression

*  The size of the KV cache increases linearly
when the token numbers increase.

*  The sparsity in the attention score matrix is
pretty high, especially in the deeper layers
(95%).

T

N )
*  remove the KV cache with low quality
score.

squality = )., attention_score[*]

softmax(

*  The compression ratio is adapted based on
the sparsity of attention score matrix.
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Data Loading and Offloading

» Layer-wise pipeline data loading
* In LLM inference, The computation of layer; depends on the output of layer;_;.
* Pipeline data loading: Overlap the transfer of the KV-cache for layer; with the

computation of layer;_;.

* Asynchronous data offloading
*  Minimize the offloading overhead by eliminating it from the request's critical path.
» Set a threshold: the usage of KV cache blocks on HBM over 90%.
« HBM s not full -> the requests do not need preempt while data offloading.
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Our Experiment and Conclusions



Experiment and Conclusion
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