CaR: An Efficient KV Cache Reuse System for Large Language Model Inference

Kexin Chu, Tzechinh Liu, Yunding Li, Pengchao Yuan, Wei Zhang University of Connecticut

CONTENTS

- Intruduction to LLMs and KV cache
- Motivation and Challenges of CaR
- Design Details of CaR system
- Our Experiment and Conclusion

01

Intruduction to LLMs and KV cache

The era of LLMs

• More companies are launching LLM models, expanding the AI landscape. [1]

LLM Inference Process

- Two stages:
 - Prefill: first iteration, compute all input tokens in a single pass
 - Decode: utilize previous generated token as input
- Regressive generation
- Layer by layer

Self-Attention & KV cache

Serving LLMs is Expensive

- Compute Sensitive (large model parameters)
 - LLMs run on high-end GPUs such as Nvidia A100
 - Each GPU can only serve a handful of requests per second
 - For LLaMA-13B and moderate size inputs, 1 A100 can process <1 requests per second
 - A ton of GPUs are required for production-scale LLM services.
- Large KV cache size
 - KV cache size: 2 * seq_len * hidden_size * sizeof(TYPE)
 - For LLaMA-13B and A100 GPUs, the generated KV cache takes close 30% of the HBM.

02

Motivation and Challenges of CaR

Opportunity for KV cache reuse

- The related KV cache is directly discarded once the request is completed.
- Scenarios with similar prefix tokens
 - Few-shot aibot
 - Multi-turn chat
 - Tree of thoughts

User 1	Few-shot examples	Q1	A1
User 2	Few-shot examples	Q1	A1
User 3	Few-shot examples	Q1	A1
Turn 1 Q1 A1			
Turn 2 History Q2 A2			
Turn 3	History	Q3	A3

Prefill Re-compute Costs

- The computational overhead during the prefill stage increases with the length of the prompt.
- LLM models are developed to support longer contexts.

Motivation

- The expensive computation in the prefill stage can be avoided by reusing the KV cache from the previous requests.
- The large KV cache storage has become a bottleneck in LLM inference.
- Multi-tier Memory System
 - Active blocks are stored in HBM of GPUs.
 - Inactive blocks are stored in external Mem.

Challenges in Multi-tier KV Cache System

- Where to place the KV cache of previous requests?
 - The HBM on GPUs is small and fast.
 - The CXL-based external memory is large but slow.
- How to limited the data transfer overhead?
 - Maximize the use of KV cache in HBM of GPUs
 - Avoid frequent data transmission between GPUs and CXL
- When to migrate the data across the tiers?
 - Avoiding the GPU stall waiting for the data to be loaded from CXL-based memory.
 - Avoid prefetch too early.

03

Design Details of CaR System

Overview of CaR System

- Co-design of Scheduler and Cache Management.
 - Replacement Policy
 - Cache -Aware Scheduler
 - Prefetch Predictor
- Quality-aware Compression algorithm.
- Pipeline data loading and asynchronous offloading

Co-design of Scheduler and Cache Management

- Maximizing KV cache reuse requires avoiding task waiting caused by frequent data offloads and prefetches.
- Scheduler
 - Use shuffle windows to categorize requests into three groups.
 - A fixed size window is used to prevent frequent changes in the order of requests.
 - Standard:
 - The size of KV cache to be transmitted from CXL to GPUs
 - Highest: the needed KV cache already in the HBM.
 - Second: do not involve any historical KV caches.
 - Lowest: The size of KV cache to be prefetched

Co-design of Scheduler and Cache Management

- Replacement Policy
 - Determine which block of KV cache need to be offload when HBM is full.
 - Avoid the deletion of the KV cache that is relied by active requests.
 - Use Score to target the KV cache blocks.
 - Standard: evict the memory block with the smallest score
 - When a request enter to shuffled windows, the score of related blocks adds 1
 - When a request enter to GPU for inference, the score of related blocks adds 1
 - When a request complete it's inference, the score of related blocks subs 2

Co-design of Scheduler and Cache Management

- Prefetch Predictor
 - Determine when to start prefetch the related KV cache of the first priority requests in shuffled window.
 - Predict when the GPUs need to load a new requests from the queue.
 - [2] utilize the LLM model to predict the output sequence length. (number of decode iterations)
 - N represent the total number of requests currently being handled on GPUs.
 - T donate the current time.
 - len_i is the predicted sequence length for request i.
 - SIZE is the size of the KV cache need to be fetched.

$$fetch(t) = \mathbb{I}_{\min_{0 \le i \le N} \{TPOP \times len_i - (t - timer_i)\} \le \frac{SIZE}{bandwidth}}(t)$$

Quality-aware Compression

- The size of the KV cache increases linearly when the token numbers increase.
- The sparsity in the attention score matrix is pretty high, especially in the deeper layers (95%).

$$softmax(\frac{Q K^T}{\sqrt{h}})$$

• remove the KV cache with low quality score.

•quality = $\sum_{col} attention_score[*]$

• The compression ratio is adapted based on the sparsity of attention score matrix.

Data Loading and Offloading

- Layer-wise pipeline data loading
 - In LLM inference, The computation of $layer_i$ depends on the output of $layer_{i-1}$.
 - Pipeline data loading: Overlap the transfer of the KV-cache for $layer_i$ with the computation of $layer_{i-1}$.
- Asynchronous data offloading
 - Minimize the offloading overhead by eliminating it from the request's critical path.
 - Set a threshold: the usage of KV cache blocks on HBM over 90%.
 - HBM is not full -> the requests do not need preempt while data offloading.

04

Our Experiment and Conclusions

Experiment and Conclusion

- Recomputation vs KV cache reused
 - Leveraging stored KV cache for reuse yields considerable improvements over recomputation.
 - The KV cache reuse demonstrates the potential to reduce TTFT by 30% in scenarios with long context.
 - With OPT-13B, this reduction even exceeds 60%.

THANKS