CaR: An Efficient KV Cache Reuse System for
Large Language Model Inference

Kexin Chu, Tzechinh Liu, Yunding Li, Pengchao Yuan, Wei Zhang
University of Connecticut

CONTENTS

e Intruduction to LLMs and KV cache
* Motivation and Challenges of CaR
* Design Details of CaR system

e Our Experiment and Conclusion

01

Intruduction to LLLMs and KV cache

The era of LLMs

* More companies are launching LLM models, expanding the Al landscape. [1]

(= ~
/—J TS <7 GShard Publicly Available
~
— 2019 \2020/\ G s W2 panGuc ¢ Ernie3.0
2021 NUAWEI
/ ~ 14 &7 PLUG Iﬁ'g; Jurassic-1
crr3 @) >
Codex @ e . - aad CPM-2
- O N 9 FLAN (5 LaMDA
: mspur Yuan 1.0 P b thi
Anthropic |A\ HyperCLOVAN AVER \ 0 AlphaCode ()] Pythia
webGpT(&) /”‘1\2 © chinchina we] Vieuna 2 InternLM J[§ Baichuan2
Ernie 3.0 Titan % InstructGPT @ 2022 RWKYV M panGux WA MPT #7 QWEN
G uis bt)
Gopher@ CodeGen —_— 9 @ Sparrow & Bard Jli Baichuan E FLM
~] G pam
cLam MT-NLG § BER 00 8 G FlanTs 00 LLaMA G PaLMZ any it
:,- ” / 0 YaLM &5 Flan-PaLM CodeGen2
CodeGeeX ™ GPT-NeoX-20B k‘ R < odeGenz € Skywork
sLoom () i z’i‘; Tk-Instruct Ai2 \ 8’ I\C Luminous StarCoder .. XVERSE
TO [o SR
. 8 At @, Cohere s / \11-17\ e FTcon X| Grok1
BLOOMZ S 2023 ——
. WeLM 14— |
Galatica 0Q I o —>»
|
OPT-IML 09 cnacer @ PG 00 LLamaz

[1] A Survey of Large Language Models (https://arxiv.org/pdf/2303.18223)

LLM Inference Process

 Two stages:
» Prefill: first iteration, compute all input tokens in a single pass
* Decode: utilize previous generated token as input

* Regressive generation

» Layer by layer

Output

Layer 1

—r—

Input |Artificia1| Intelligence | is |

Self-Attention & KV cache

Self Attention :
Q=xW,
K = xWg
V =xWy

ok’
out = softmax(: \/F)*V

’
| T 2

N

Output the future of
—lr— = = —r—
Layer N Layer N Layer N
KV Cache 1 ‘;_//ﬂ
| Artificial [202 [0.1 | 09 the [[O1 [04 [13] futwe [03 T 0T [12]
i Intelligence | (.9 -0.7 0.8
L s L1 | -01 [-0.1
Layer 1 Layer 1 Layer 1
KV Cache 1 A—Vﬁ
| Artificial [=01 | 03 | 08 the [205] 02 | 13] future (07 1 -02 [05 |
i Intelligence | (.7 -04 -0.7
L s 02 1 -01 [09
—r— —lr— —r—
Input Artificial | Intelligence | is the future

Serving LLMs 1s Expensive

» Compute Sensitive (large model parameters)
¢ LLMs run on high-end GPUs such as Nvidia A100

* Each GPU can only serve a handful of requests per second

. For LLaMA-13B and moderate size inputs, 1 A100 can process <1 requests per second
* Aton of GPUs are required for production-scale LLM services.
« Large KV cache size

KV cachesize: 2 * seq_len » hidden_size * sizeof (TYPE)
 For LLaMA-13B and A100 GPUs, the generated KV cache takes close 30% of the HBM.

02

Motivation and Challenges of CaR

Opportunity for KV cache reuse

* The related KV cache is directly discarded once the request is completed.

* Scenarios with similar prefix tokens

. Few-shot aibot

User 1 [Few-shot examples M Q1 M Al]

. Multi-turn chat

User 2 [Few-shot examples M Q1 M Al]

* Tree of thoughts

User 3 { Few-shot examples M Q1 M Al J

Branch 1 H Branch 1

[Search History [Branch 1.1 H Branch 1.1]

]
1
[Search History M Branch 1.2 M Branch 1.2 } Turn 1
J
1

Branch 2 H Branch 2 Turn 2 [History M Q2][A2]

[Search History [Branch 1.2 M Branch 1.2] Turn 3 [History M Q3][A3]

FT/TTET
o S o B
- o @ o

ol
N

S
o

Prefill Re-compute Costs

—e— OPT6.7B

o~ OPT13B
—eo— LLaMA-2 7B
—o— LLaMA-2 13B

) 7 10 3 16 19 2 > 2 31
Request Length (k)

Context Length(K)

LLM models are developed to support longer contexts.

GPT-3,

GPTy

The computational overhead during the prefill stage increases with the length of the prompt.

LongRoP
Gimini 1.

c&g‘;ﬁ’g‘z- &praTurbo

GPT—Ab .Gimini 1.0 Pro
PaLM-?.

GPT-3. lama-2
GPT—?b PaLIVL Llafr)ﬂa. J_

2018 2019

2020 2021 2022 2023 2024

Motivation

» The expensive computation in the prefill stage can be avoided by reusing the KV cache from the
previous requests.
* The large KV cache storage has become a bottleneck in LLM inference.
* Multi-tier Memory System
* Active blocks are stored in HBM of GPUs.

e Inactive blocks are stored in external Mem. Model
parameters
SMs

Others

KV cache

GPUs

Challenges in Multi-tier KV Cache System

* Where to place the KV cache of previous requests?
* The HBM on GPUs is small and fast.
* The CXL-based external memory is large but slow.
* How to limited the data transfer overhead?
* Maximize the use of KV cache in HBM of GPUs
* Avoid frequent data transmission between GPUs and CXL
* When to migrate the data across the tiers?
* Avoiding the GPU stall waiting for the data to be loaded from CXL-based memory.

* Avoid prefetch too early.

03

Design Details of CaR System

Overview of CaR System

* Co-design of Scheduler and Cache CPU

KV-Cache Manager Request

Queue
Management' Cache Replacement Policy

* Replacement Policy
- l«— Cache-Aware
 Cache -Aware Scheduler Scheduler

Request Batch |Response

* Prefetch Predictor ‘ v

LLM

* Quality-aware Compression algorithm. LM
oage

Quality-aware
Sparsification

* Pipeline data loading and asynchronous

GPU

offloading

Co-design of Scheduler and Cache Management

Maximizing KV cache reuse requires avoiding task
waiting caused by frequent data offloads and

prefetches.
Scheduler New Coming Requests Shuffled Window
* Use shuffle windows to categorize requests into 10 (|| | | | 00

three groups.
* A fixed size window is used to prevent frequent

changes in the order of requests.

Cache table 1]

NodelD | Addr Valid_in_GPU | Size | Score v

e Standard: — ’ .
. The size of KV cache to be transmitted from epP::’cI?cn;en «— Prefetcher
CXL to GPUs

* Highest: the needed KV cache already in the
HBM.

* Second: do not involve any historical KV caches.

* Lowest: The size of KV cache to be prefetched

Co-design of Scheduler and Cache Management

* Replacement Policy
* Determine which block of KV cache need to be
offload when HBM is full.
* Avoid the deletion of the KV cache that is relied
by active requests. New Coming Requests Shuffled Window

0| | 1000

* Use Score to target the KV cache blocks.
* Standard: evict the memory block with the

smallest score Cache table
) NodelD | Addr Valid_in_GPU | Size | Score

* When a request enter to shuffled windows, the RePI':"i?me“t . «—{ Prefetcher
score of related blocks adds 1 oy

* When a request enter to GPU for inference, the
score of related blocks adds 1

* When a request complete it’s inference, the
score of related blocks subs 2

Co-design of Scheduler and Cache Management

e Prefetch Predictor

* Determine when to start prefetch the related KV cache of the first priority requests in shuffled
window.

* Predict when the GPUs need to load a new requests from the queue.
e [2] utilize the LLM model to predict the output sequence length. (number of decode
iterations)
* N represent the total number of requests currently being handled on GPUs.
* T donate the current time.
* len,; is the predicted sequence length for request i.
» SIZE is the size of the KV cache need to be fetched.

fet(h(t) —]IminoS,-SN{TPOPXleni—(t—timeri)}g% (t)

[2] Response length perception and sequence scheduling (https://arxiv.org/pdf/2305.13144)

Quality-aware Compression

* The size of the KV cache increases linearly
when the token numbers increase.

* The sparsity in the attention score matrix is
pretty high, especially in the deeper layers
(95%).

T

N)
* remove the KV cache with low quality
score.

squality =)., attention_score[*]

softmax(

* The compression ratio is adapted based on
the sparsity of attention score matrix.

Percentage

100%

80% A

60%

20%

0%

—— OPT-6.7B
«~ OPT-13B
—»— OPT-30B
—e— Llama-7B
—»— Llama-13B

10

15

20

5
LLM Layer

30

35

a0

as

Data Loading and Offloading

» Layer-wise pipeline data loading
* In LLM inference, The computation of layer; depends on the output of layer;_;.
* Pipeline data loading: Overlap the transfer of the KV-cache for layer; with the

computation of layer;_;.

* Asynchronous data offloading
* Minimize the offloading overhead by eliminating it from the request's critical path.
» Set a threshold: the usage of KV cache blocks on HBM over 90%.
« HBM s not full -> the requests do not need preempt while data offloading.

04

Our Experiment and Conclusions

Experiment and Conclusion

OPT-6.7B OPT-13B
. 4
* Recomputation vs KV R o reompueoney
cache reused 3
. 0 @ 4]
— Leveraging stored KV cache =, >
for reuse yields considerable 8 g
improvements over 2 =2 _ aageany?
recomputation. T
— The KV cache reuse o] , ' , , . . . B R T e e
demonstrates the potential to ¢ 4 B I W B A @ R Token Number (k)
reduce TTFT by 30% in OPT-30B
. . 4 Llama-2-7b-longlora
scenarios with long context. - IRCHTIte Stkney e e
—a— reload latency & reload latency
— With OPT-13B, this reduction 3] N
even exceeds 60%. 0 2
>
é 24 g 24 o
E 5 PO o ol
17 14 e b
01 04 .
0 4 8 12 16 20 24 28 EY 0 a 8 12 16 20 24 28 32

Token Number (k) Token Number (k)

THANKS

