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Intruduction to LLMs and KV cache



The era of LLMs

• More companies are launching LLM models, expanding the AI landscape. [1]

[1] A Survey of Large Language Models (https://arxiv.org/pdf/2303.18223)



LLM Inference Process

• Two stages:

• Prefill: first iteration, compute all input tokens in a single pass

• Decode: utilize previous generated token as input

• Regressive generation

• Layer by layer



Self-Attention & KV cache
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Serving LLMs is Expensive

• Compute Sensitive (large model parameters)
• LLMs run on high-end GPUs such as Nvidia A100

• Each GPU can only serve a handful of requests per second
• For LLaMA-13B and moderate size inputs, 1 A100 can process <1 requests per second

• A ton of GPUs are required for production-scale LLM services.

• Large KV cache size
• KV cache size: 2 ∗ 𝑠𝑒𝑞_𝑙𝑒𝑛 ∗ ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑇𝑌𝑃𝐸)

• For LLaMA-13B and A100 GPUs, the generated KV cache takes close 30% of the HBM.
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Motivation and Challenges of CaR



Opportunity for KV cache reuse

• The related KV cache is directly discarded once the request is completed.

• Scenarios with similar prefix tokens
• Few-shot aibot

• Multi-turn chat

• Tree of thoughts
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Prefill Re-compute Costs

• The computational overhead during the prefill stage increases with the length of the prompt.

• LLM models are developed to support longer contexts.



Motivation

• The expensive computation in the prefill stage can be avoided by reusing the KV cache from the

previous requests.

• The large KV cache storage has become a bottleneck in LLM inference.

• Multi-tier Memory System

• Active blocks are stored in HBM of GPUs.

• Inactive blocks are stored in external Mem.
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Challenges in Multi-tier KV Cache System

• Where to place the KV cache of previous requests?

• The HBM on GPUs is small and fast.

• The CXL-based external memory is large but slow.

• How to limited the data transfer overhead?

• Maximize the use of KV cache in HBM of GPUs

• Avoid frequent data transmission between GPUs and CXL

• When to migrate the data across the tiers?

• Avoiding the GPU stall waiting for the data to be loaded from CXL-based memory.

• Avoid prefetch too early.
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Design Details of CaR System



Overview of CaR System

• Co-design of Scheduler and Cache

Management.

• Replacement Policy

• Cache -Aware Scheduler

• Prefetch Predictor

• Quality-aware Compression algorithm.

• Pipeline data loading and asynchronous 

offloading
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Co-design of Scheduler and Cache Management

• Maximizing KV cache reuse requires avoiding task 
waiting caused by frequent data offloads and 
prefetches.

• Scheduler
• Use shuffle windows to categorize requests into

three groups.
• A fixed size window is used to prevent frequent

changes in the order of requests.
• Standard：

• The size of KV cache to be transmitted from
CXL to GPUs

• Highest: the needed KV cache already in the
HBM.

• Second: do not involve any historical KV caches.
• Lowest: The size of KV cache to be prefetched

New Coming Requests

Replacement 
Policy Prefetcher

Shuffled Window

NodeID Addr Valid_in_GPU Size Score

Cache table



Co-design of Scheduler and Cache Management

• Replacement Policy
• Determine which block of KV cache need to be

offload when HBM is full.
• Avoid the deletion of the KV cache that is relied

by active requests.

• Use Score to target the KV cache blocks.
• Standard: evict the memory block with the

smallest score

• When a request enter to shuffled windows, the
score of related blocks adds 1

• When a request enter to GPU for inference, the
score of related blocks adds 1

• When a request complete it’s inference, the
score of related blocks subs 2

New Coming Requests

Replacement 
Policy Prefetcher

Shuffled Window

NodeID Addr Valid_in_GPU Size Score

Cache table



Co-design of Scheduler and Cache Management

• Prefetch Predictor
• Determine when to start prefetch the related KV cache of the first priority requests in shuffled

window.

• Predict when the GPUs need to load a new requests from the queue.
• [2] utilize the LLM model to predict the output sequence length. (number of decode

iterations)
• N represent the total number of requests currently being handled on GPUs.
• T donate the current time.
• 𝑙𝑒𝑛2 is the predicted sequence length for request i.
• SIZE is the size of the KV cache need to be fetched.

[2] Response length perception and sequence scheduling (https://arxiv.org/pdf/2305.13144)



Quality-aware Compression

• The size of the KV cache increases linearly 
when the token numbers increase.

• The sparsity in the attention score matrix is 
pretty high, especially in the deeper layers
(95%).

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄	𝐾 	3

ℎ
)

• remove the KV cache with low quality
score.
•𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = ∑456 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒[∗]

• The compression ratio is adapted based on 
the sparsity of attention score matrix.



Data Loading and Offloading

• Layer-wise pipeline data loading

• In LLM inference, The computation of 𝑙𝑎𝑦𝑒𝑟! depends on the output of 𝑙𝑎𝑦𝑒𝑟!"#.

• Pipeline data loading: Overlap the transfer of the KV-cache for 𝑙𝑎𝑦𝑒𝑟$ with the 

computation of 𝑙𝑎𝑦𝑒𝑟!"#.

• Asynchronous data offloading

• Minimize the offloading overhead by eliminating it from the request's critical path.

• Set a threshold: the usage of KV cache blocks on HBM over 90%.

• HBM is not full -> the requests do not need preempt while data offloading.
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Our Experiment and Conclusions



Experiment and Conclusion

• Recomputation vs KV
cache reused
– Leveraging stored KV cache 

for reuse yields considerable 
improvements over 
recomputation.

– The KV cache reuse 
demonstrates the potential to 
reduce TTFT by 30% in
scenarios with long context. 

– With OPT-13B, this reduction
even exceeds 60%.
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