Brain-CA Technologies

Casting off the Old Guard

Achieving Superior A.I. Performance through Simplification

V

What if we could cut A.I. Energy costs by 99%?

Basic learning task using 99% fewer transistors. Savings: Energy, Size, Cost.

Agenda

- Current LLM and GNN challenges and the inherent limitations of Von Neumann architecture.
- BRAIN-CA Physical Architecture
 using Cellular Automata for simplicity, scalability and
 lower power requirements.
- BRAIN-CA Logical Architecture using simple bit manipulations and no CPU.

The Legacy of Von Neumann Architecture

Cellular Automata (CA)

Grid of cells, with

- State (memory)
- Rules (logic)

Rules for State Management

Classic example Conway's Game of Life

The BRAIN-CA[™] Physical Architecture

Let's look at seven of them.

The BRAIN-CA™ Physical Architecture

Cells' inputs align with neighbors' outputs.

Primary paths route through cell.

The BRAIN-CA™ Physical Architecture

Logic facilitates passing values at oblique angles.

Cells consist of six identical equilateral triangles.

The BRAIN-CA[™] Physical Architecture

Designed for Simplicity and Massive Parallelism.

The BRAIN-CA[™] Logical Architecture

Dashboard

BRAIN-CA in action

Inputs initiate communication waves

Communication System

Recurring observations solidify relationship

Communication System & Memory System

Pie Chart Using Counters

Gray

Input

Using Counters Showing Powers of Two

Cincinnati Algorithm & BRAIN-CA[™] Estimator

Cincinnati Algorithm & BRAIN-CA[™] Estimator

Fast connections for strong relationships

Connection System

Prediction from relationships & connections

Memory System

Offset pulses are accommodated – Training

Memory System

Offset pulses are accommodated – Inference

Memory System

Multi-Bit finds complex relationships

Multi-Bit Technology

addresses complex relationships without the need for hidden layers.

Tried and Tested	Bold and Innovative
Von Neumann architecture: separate memory and compute	BRAIN-CA [™] Cellular Automata architecture: embedded memory with very simple compute (logic)
Neural networks: weight and bias calculations, back propagation	Binary decomposition: simple correlation table lookups, The Cincinnati Algorithm
Highly complex, hot systems: focus on maximizing FLOPS	Simple systems with lower energy costs: focus on minimizing CA System complexity
Learning through complex calculus	Learning by associating observations
Absolute memory addressing	Relative cell addressing
Rigid node connections	Wave propagation and dynamic connections
Floating point representation	Bit, integer, and BRAIN-CA™ Estimator representation
Floating point math operations (add, subtract, multiply, divide, exponentiate, log, square root, trigonometric, etc.)	Logic only (compare, invert, And, Or, Not, increment, decrement)

Brain-CA Technologies

Arrange a meeting with us during ISCA! brain-ca.com/ISCA

