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•
First to break Exascale barrier

•
One 64-core AMD “Trento” CPU, four AMD Radeon Instinct MI250X 
GPUs, and 512GB of DDR4 memory

•
8,138,240 cores and 4.6 petabytes of HBM memory (128GB/GPU)

•
9.95 Eflops on HPL-MxP Mixed-Precision Benchmark

TOP500, Green500, and HPL-AI lists, as of May 30,2022
Source: TOP500, Green500 and HPL-MxP lists, as of June 2023

https://www.top500.org/lists/top500/2023/06/
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Output

Discovery of new materials and new chemical processes
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• Training Data Required*  = (20 – 200) × # parameters 
                                        = (20 – 200) × 1 Trillion
                                        = (20 – 200) Terabytes

• Total Compute Required = 6 × #parameters × # training_datapoints
                                        = 6 × (1 Trillion) × (20 – 200) Trillion
                                        = (120 – 1200) Million ExaFLOPS

Modern GPUs have < 200 GB Memory and operate at a few hundred of TFLOPS

Solution: 
Distribute the training workload across thousands of GPUs on an ExaFLOP machine

*Source: Junqi Yin et. al, “FORGE: Pre-Training Open Foundation Models for Science”. SC '23).
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Frontier Specs
• 37,888 AMD Instinct™ MI250X GPUs
• Each MI250X has 
• 128 GB memory
• 383 TFLOPS peak throughput (FP16)

• Each MI250X is split across 2 GCDs (Graphic Compute Die)

Challenges:
• How to distribute the training workload across thousands of MI250X GPUs?
• How to take advantage of existing software developed for accelerating LLMs on these 

massive clusters?
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• A combination of Tensor, Pipeline, and Data parallelism ported to Frontier

• Determine how many GPUs (world-size) you need to fit the model

• Factorize world-size into TP (Tensor parallel size) and PP (Pipeline parallel size)

Distribution Strategy Tunable Parameters
Tensor Parallelism Tensor Parallel Size (TP)
Pipeline Parallelism Pipeline Parallel Size (PP), #Microbatches (m)
Sharded Data Parallelism ZeRO-1
Common Micro Batch Size
Mixed Precision Training FP16, BF16

Table: Distribution Strategies and Relevant Tunable Parameters
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• Tensor Parallelism (TP)
• Keep it within the node (TP < 8)

• Pipeline Parallelism (PP)
• Use large number of micro-batches (but that can increase the global batch-size)

• Data Parallelism (DP)
• Can’t use too much data parallelism. A large global batch size will make the model divergent
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• DeepHyper: A Bayesian search 
algorithm for hyperparameter search.

• SHAP (SHapley Additive exPlanations) 
sensitivity analysis to assess the 
impact of hyperparameters on 
performance.

• Microbatch size is the most important 
parameter to tune followed by TP.
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• DeepHyper: A Bayesian search 
algorithm for hyperparameter search.

• SHAP (SHapley Additive exPlanations) 
sensitivity analysis to assess the 
impact of hyperparameters on 
performance.

• Microbatch size is the most important 
parameter to tune followed by TP.
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PP Size

Number of Nodes

ZeRO1

Higher is Better

*On 3,072 MI250X GCDs

Impact on Model Output Magnitude (SHAP)
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1. Training Challenges
• Training large language models (LLMs) with billions to trillions of parameters involves overcoming GPU memory and 

communication challenges.

2. Parallelism Strategies
• Model parallelism (tensor and pipeline) and data parallelism distribute the load across multiple GPUs to address 

memory constraints.

3. Software and Frameworks
• The right combination of parallelization and frameworks like Megatron-DeepSpeed, plus hyperparameter tuning, are 

important to high throughput on Frontier with AMD ROCm software.

4. Performance Achievements
• Achieved high GPU throughput and strong scaling efficiencies (up to 100% weak scaling, 89% and 87% strong scaling) 

for 175 billion and 1 trillion parameter models on thousands of GPUs.
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Humidity
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Application Features
• High-resolution and high-

dimensional image data
• Complex spatial dependencies 

within images

Implications
• More compute power 
• Higher memory capacity
• Sophisticated processing for 

efficient scaling
• Complex parallelization strategies
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Data batch Model Activation

Fully Sharded Data Parallel (FSDP)

Data batch Model

GPU 1

• Each GPU works on a different data batch
AllGather to bring in all the parameters before compute
Performance is limited by the peak memory use when gathering 
full model parameters
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Data batch Model Activation

Fully Sharded Data Parallel (FSDP)

Data batch Model

GPU 1

GPU 2

AllGather Full Model Activation

• Each GPU works on a different data batch
• AllGather to bring in all the parameters before compute

Tensor Parallel (TP)

Data batch Model

GPU 1

GPU 2

• Each GPU works on partials of entire model
• AllReduce to reduce all the partial activations together

Partial 
Activation

Activation

Performance is limited by the peak memory use when 
gathering full model parameters

Performance scalability is bottlenecked by the limited 
number of attention heads

AllReduce
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Fusing both FSDP and TP

• Does not need to gather a temporary copy 
of all parameters like FSDP => Lower peak 
memory footprint

• Scalability is not limited by the number of 
attention heads => Higher scalability
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• Each horizontal purple rectangle represents a 
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• Each horizontal purple rectangle represents a 
tensor-parallel group. 

• Vertical red rectangles represent Fully Sharded 
Data Parallel (FSDP) groups. 

GPU 1 GPU 2 GPU 3 GPU 4

GPU 5 GPU 6 GPU 7 GPU 8

Tensor-
parallel

Tensor-
parallel

FSDP FSDP FSDP FSDP



47 |

• Each horizontal purple rectangle represents a 
tensor-parallel group. 

• Vertical red rectangles represent Fully Sharded 
Data Parallel (FSDP) groups. 

• Green rectangles represent Distributed Data 
Parallel (DDP) groups.
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1. Complexity of Environmental Systems
• Predicting Earth system processes requires robust, adaptable, and scalable computational models due to their inherent 

complexity and numerous influencing variables.

2. Limitations of FSDP and TP
• FSDP is constrained by peak memory use during model gathering, and tensor parallelism is limited by attention heads.

3. Efficient AI Scaling
• Hybrid Sharded Tensor-Data Orthogonal Parallelism (HybridSTOP) retains 81-96% strong scaling efficiency at 24,576 GPUs, 

overcoming these limitations.

4. Broad Applicability
• The proposed techniques benefit fields with large datasets like astrophysics and biology, enhancing AI and HPC integration.
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Atomic Scale Mesoscale Continuum Scale

Nodes = atoms
Edges = interatomic 
bonds

Nodes = Voronoi centers
Edges = connection between 
Voronoi centers

Nodes = vertices of the finite 
element mesh
Edges = edges of the finite 
element mesh

Image Sources: https://link.springer.com/article/10.1007/s11837-019-03808-x; http://biomechanics.stanford.edu/me309/me309_c01.pdf;  

https://link.springer.com/article/10.1007/s11837-019-03808-x
http://biomechanics.stanford.edu/me309/me309_c01.pdf
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The architecture of GNN is made of:

1. A graph embedding layer

2. Hidden graph layers capturing the short-range interactions between nodes

3. Pooling layers interleaved with graph layers

4. Fully connected (FC) dense layers

Target node

Output
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• Conduct hyperparameter trails 
(HPO) to determine the top-K best 
GNN configurations

• Run the top-K GNNs in an 
ensemble fashion

• 8,192 nodes of OLCF Frontier (87% 
of the machine) have been used to 
explore 200 unique 
hyperparameter configurations.
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Small model ~ 54K parameters
Medium model ~ 16M parameters
Large model ~ 164M parameters

The suboptimal strong scaling could 
be a byproduct of load-imbalance in 
each individual GNN compute-
communication pattern.101
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1. Application Features
• Materials at different scaling (e.g., atomic scale, mesoscale) are represented as graphs and processed using graph 

neural networks.

2. Model Selection and Hyperparameter Optimization
• Conduct HPO trails and determine the top-K GNN hyperparameter configurations that result in the least mean absolute 

error. Run all the top-K GNN models in an ensemble fashion for the execution of the application.

3. Critical Properties of Hydra-GNN
• Hydra-GNN must satisfy five critical properties corresponding to flexibility, scalability, and heterogeneity in applications, 

software, and hardware support.

4. Performance Achievements
• Achieved high GPU throughput and strong scaling efficiencies up to few thousand GPUs.
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While our experiments show impressive strong and weak scaling, there is still 
opportunity for improvement
• GPU utilization is under 40% for all model sizes

Potential Opportunities
• Exploring opportunities to overlap communication with computations
• Efficient parallelization strategies that optimize data movement and memory accesses.
• Research novel attention algorithms
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• Exploring load balancing opportunities while executing a single GNN model across 
multiple CUs / GPUs

• Exploring load balancing opportunities when running an ensemble of GNN architecture 
each with a different set of hyperparameters – architecture, number of layer, FLOPs, etc.

• Run-time / dynamic memory allocation to improve GPU memory utilization
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1. Significant Impact of AI-for-Science:
• AI-for-Science applications can significantly help better lives, economies, and communities.

2. Frontier’s Role:
• Frontier, our cutting-edge hardware, along with AMD ROCm software support, stands as the essential backbone, driving the 

execution of these models with unmatched efficiency.

3. Three Foundational Models:
• We’ve categorized these applications into 3 foundational models, each tailored to specific computational and communication 

needs and challenges.

4. Challenges and Roadblocks
• GPU Compute and Memory Utilization: Optimizing the use of GPU resources remains a critical challenge.
• Load Balancing: Efficiently distributing workloads to maximize performance is another significant hurdle.

5. Future Directions
• We are working on more sophisticated tools to do nuanced analysis, characterization, and optimization of ML models at scale
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1. Sajal Dash et. al, “Optimizing Distributed Training on Frontier for Large Language Models”, arXiv, 2023

2. T. Nguyen et. al, “Climax: A foundation model for weather and climate,” 2023
3. Xiao Wang et. al, “ORBIT: Oak Ridge Base Foundation Model for Earth System Predictability”, arXiv, 2024

4. “HydraGNN - Distributed PyTorch implementation of multi-headed graph convolutional neural networks”, 
Computing and Computational Sciences Directorate, Oak Ride National Laboratory

5. "HydraGNN: Distributed PyTorch implementation of multi-headed graph convolutional neural networks", 
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