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Abstract—The increase in open-source availability of Large
Language Models (LLMs) has enabled users to deploy them
on more and more resource-constrained edge devices to reduce
reliance on network connections and provide more privacy. How-
ever, the high computation and memory demands of LLMs make
their execution on resource-constrained edge devices inefficient
and challenging. To address this issue, designing new and efficient
edge accelerators for LLM inference is crucial.

FPGA-based accelerators are ideal for LLM acceleration due
to their reconfigurability, as they enable model-specific opti-
mizations and higher performance per watt. However, creating
and integrating FPGA-based accelerators for LLMs has proven
challenging, particularly due to the limited hardware design flows
for LLMs in existing FPGA platforms.

To tackle this issue, in this paper we first propose a new
design platform, named SECDA-LLM, that utilizes the SECDA
methodology to streamline the process of designing, integrating,
and deploying efficient FPGA-based LLM accelerators for the
llama.cpp inference framework. We then demonstrate, through
a case study, the potential benefits of SECDA-LLM by creating
a new MatMul accelerator that supports block floating point
quantized operations for LLMs. We ran our initial accelerator
design on the PYNQ-Z1 board, achieving on par performance
with the CPU (20 seconds per token or ∼27 seconds per word)
for the TinyLlama model. We plan to improve it in the future.

I. INTRODUCTION

Large language models (LLMs) are an emerging class of
machine learning systems geared toward learning from huge
text-based datasets. LLMs such as GPT-3 [1] revolutionized
the ability of Artificial Integillence (AI) systems to understand
and generate human language. Due to innovative changes in
model architecture, training methods, and through the help of
the popularity of online services like ChatGPT [2], the field
of LLMs has evolved rapidly.

The number of everyday users is growing rapidly due to
the myriad of use cases from translation [3], classification [4],
code generation [5] to healthcare [6]. Additionally, cloud-
based LLM services are currently the go-to method of access
to LLMs for everyday users, but as the availability of open-
source LLMs and datasets increased, especially over the last
few years, the need for edge-based, localized access and
execution of LLMs has become more sought after. Massive
community-driven pushes have facilitated easy access to LLMs
and rapid prototyping of new models and optimizations to en-
able efficient LLM inference on edge devices. On the forefront
of these pushes is the GPT-Generated Model Language [7]
(GGML). GGML is a tensor library for ML specialized in
enabling large models and high performance on commodity
hardware. Furthermore, the GGML’s llama.cpp project [8] is

specialized towards running LLMs on edge devices, supporting
LLM inference on commodity CPUs and GPUs.

Unfortunately, LLMs, even for inference, can be very
computationally demanding. In addition, due to their large
memory footprint, they require high memory capacity and
bandwidth. These properties of LLMs make them challenging
to execute on edge-based devices. Additionally, running LLMs
on resource-constrained devices, such as mobile phones or
Internet of Things devices (IoT) is even more difficult and,
in some cases, impossible due to memory constraints. Hence,
there is a great demand for developing and deploying cus-
tom hardware accelerators to run these LLMs on the edge.
Fortunately, FPGAs are ideal for designing new flexible and
power-efficient accelerators that can take advantage of LLM
optimizations, such as block floating point quantization, for
edge inference. While some FPGA-based accelerators [9], [10]
already exist for LLM inference on the edge, with constant
changes to LLM architectures and optimizations, we are in
need of new specialized FPGA-based accelerators for them.

To meet these demands of new and innovative FPGA-
based accelerator architectures for LLM inference on the edge,
we need ways to quickly prototype and evaluate LLM-based
inference accelerators to reduce development costs and in-
crease design space exploration. Hence, we propose SECDA-
LLM, a new platform for designing, integrating and deploying
specialized accelerators for LLMs on the edge. SECDA-LLM
employs the SECDA design methodology [11], and similar to
SECDA-TFLite [12], it provides the user with the ability to
quickly prototype accelerator design with the target application
framework, in this case, llama.cpp project. Our SECDA-
LLM platform enables the designer to consider hardware-
software co-design optimizations from different levels of LLM
execution and makes deployment of LLMs through FPGA-
based accelerators effortless. The contributions of this work
are as follows:

• SECDA-LLM, a new design platform using the SECDA
methodology which enables designing, integrating and
deploying FPGA-based LLM accelerators for resource-
constrained edge devices.

• A case study to demonstrate SECDA-LLM, where we
prototype and deploy a new accelerator, with the focus on
model-specific optimizations to accelerate the TinyLlama
model [13], on the our target device, the PYNQ-Z1 [14].

• Evaluation of our initial accelerator design, where we
evaluated the TinyLlama model [13] using our acceler-
ator, achieving the initial speed of 20 seconds per token.



II. BACKGROUND & RELATED WORK

A. Large Language Models

LLMs are a family of models that use the Transformer [15]
architecture as the key component, and are pre-trained on large
amounts of language data. People usually use them by fine-
tuning with downstream task-specific datasets. LLMs usually
have large amounts of parameters. For example, Llama is
designed to start with 7B parameters [16]. Also, many types
of language-generating LLMs auto-regressively compute the
next tokens (chunks of text) by using the previously cached
information. This computation paradigm introduces a large
amount of storage overheads called KV cache [17].

Quantization techniques are extensively employed to deploy
parameter-intensive LLMs on resource-constrained devices.
Utilizing 8-bit quantization facilitates the retention of model
accuracy while diminishing the model size [18], [19]. More-
over, prior studies have demonstrated efforts in experimenting
with 4-bit and 8-bit quantization methods to enable the op-
eration of LLMs on edge devices while upholding accuracy
levels [20].

Another quantization technique that can be considered is
the block floating point (BFP) quantization; there have been
some works [21] comparing the efficacy of block floating point
quantization to traditional narrow precision quantization.

B. Inference framework: llama.cpp

llama.cpp [8] is a pure C/C++ library, with minimal external
dependencies, for enabling LLMs inference on a wide range
of hardware. Currently, llama.cpp supports a wide range of
LLMs, including some multi-modal and custom-defined mod-
els. Additionally, it supports 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-
bit, and 8-bit BFP quantization. In llama.cpp implementation,
BFP quantization is leveraged to quantize the weights of
the LLMs, and it includes few quantization variations. These
variations are typically denoted as Qx_y, where x represents
the number of bits per weight and y denotes the type of
quantization.

llama.cpp [8] employs the GPT-Generated Unified Format
model format (GGUF) to represent LLMs. Within this format,
it is possible to represent the weights of an LLM with as few
as 1.5 bits using BFP quantization. These quantized weights
enable users to run the model on resource-constrained devices
such as the Raspberry Pi and Pixel phone [22].

LLMs inference can be straightforward on resource-
constrained devices equipped with CPUs or GPUs due to the
optimized support provided by llama.cpp [8] for AVX, AVX2,
and AVX-512 on x86 architectures as well as custom CUDA
kernels for running on NVIDIA GPUs. However, LLM infer-
ence on FPGAs is not straightforward, as the design process
for new FPGA-based accelerators has not been integrated with
inference platforms like llama.cpp yet.

C. FPGA-based acceleration for LLMs

Researchers have previously described acceleration ideas for
running language models on FPGAs [23]. The focus was gen-
erally to accelerate the workload of an LLM. Additionally, they

Fig. 1: Overview of the SECDA methodology [11]. Compo-
nents in the dashed lines correspond to simulation, and in the
dotted lines to execution on real hardware.

have addressed the challenge of executing a wide variation of
language models on FPGAs by proposing an overlay FPGA-
based processor [9]. However, researchers have yet to focus
on developing design flows and enabling explorations of new
FPGA-based acceleration ideas for the latest language models.
While transformer accelerator design that commences with the
C/C++ code of an LLM exists [10], their primary focus lies
on the accelerator design aspect, not necessarily emphasizing
the design process itself.

As such, we aimed to employ SECDA (SystemC Enabled
Co-design of DNN Accelerators) 1, a hardware-software de-
sign methodology to efficiently produce optimized inference
accelerators for edge devices using FPGAs. SECDA uses Sys-
temC [24] as an accelerator simulation framework, allowing
candidate designs to be efficiently iterated upon. Addition-
ally, SECDA uses SystemC High-Level Synthesis (HLS) to
produce a synthesizable design based on the same SystemC
accelerator definition. One key aspect of SECDA is the full
integration of the design process with the target application
framework. For LLMs inference, llama.cpp is the ideal target
application framework. With the integration of llama.cpp as
the application framework, it becomes feasible to convert an
LLM to the GGUF format and execute LLMs on edge FPGA-
based platforms.

III. SECDA-LLM

SECDA-LLM is a specialized platform for creating FPGA-
based LLM accelerators for edge devices using the SECDA
methodology within the llama.cpp environment. Figure 2
outlines the main components of SECDA-LLM. The platform
simplifies the accelerator design process by integrating the
SECDA tools, thus allowing a seamless connection between
the SECDA design environment and the target application
framework, llama.cpp. This integration enables developers
to begin prototyping and integrating their new designs with
minimal setup costs.

The rest of this section provides details on SECDA-LLM
and: i) how it is integrated with llama.cpp; ii) how it enables
the accelerator designer to prototype and simulate new designs
with SystemC [24] simulation; iii) the ease of hardware eval-
uation; iv) the profiling and performance analysis capabilities
of SECDA-LLM.



Fig. 2: Overview of the SECDA-LLM. Key SECDA compo-
nents are highlighted in orange, and the LLM components are
highlighted in beige.

A. Integration with llama.cpp

Figure 2 shows that the SECDA-LLM platform builds upon
the core llama.cpp project inference. Our current integration
is through llama.cpp’s main example project, which enables
users to run LLM models with minimal overhead. We can
connect into llama.cpp once it calls any of the GGML’s
operations.

Depending on our target operation(s), we create additional
connection points from the GGML library to the SECDA
environment. During these connections, we ensure the creation
of a context handle to pass from the GGML environment to
the SECDA environment; the context handle includes point-
ers memory, memory-mapped model data, access to relevant
inputs tensors, quantization, and layer parameters.

B. SECDA Environment

Within the SECDA environment, shown in Figure 2, the
accelerator designer can start quickly prototyping the initial
accelerator design and driver code. First, the user is required
to create the initial driver, a simple C++ class that will gain
access to the context handle provided by the offload call from
within GGML. Second, the developer must create an initial
SystemC description of their accelerator. Then, the user can
instantiate their desired data communication channels between
the driver and accelerator using data interfaces provided within
the SECDA environment (e.g, AXI4-S, AXI-MM and AXI-
Lite). The developer can use these data channels for SystemC
end-to-end simulation.

C. SystemC Simulation

SystemC end-to-end simulation is a crucial step in the
SECDA methodology; therefore, SECDA-LLM provides ac-
cess to SystemC simulation. The simulation-based design loop
is shown on the bottom left half of the figure 2. Once the
driver and accelerator are connected through the desired data

communication channels, the user can perform end-to-end
simulations of LLMs using SECDA-LLM. With simulation
enabled, the designer can quickly prototype new driver and ac-
celerator features, verifying correctness, profiling performance
and modeling control flow behavior within their design. The
hardware developer is able to rapidly iterate through their
design process, through end-to-end simulation, to meet their
target performance.

D. Hardware Evaluation

With simulation-based evaluation, the designer can quickly
make fast, broad design changes. Once satisfied with their
design, the designer can quickly take their SystemC-defined
design and perform High-level synthesis (HLS) and logic syn-
thesis (HLX) through the hardware automation tool provided
by SECDA-LLM to map it to their target FPGA, as shown on
the bottom right of figure 2. Additionally, as SECDA-LLM
is integrated with the llama.cpp project, we can leverage the
llama.cpp project’s compilation flow to generate pre-defined
applications that use the LLMs through the llama.cpp’s in-
terface. These generated applications will now have complete
access to the driver and accelerator for execution on an FPGA-
enabled device; see section IV-C for details.

A major benefit of the SECDA methodology, and therefore
SECDA-LLM, is that we can reuse the driver and accelerator
completely. For actual FPGA evaluation, the designer does
not need to make any changes to the driver to enable real
hardware execution, as the SECDA data interfaces switch
between simulation and FPGA execution through a simple
"SYSC" compiler flag. Once the accelerator is mapped to the
target FPGA, the designer can evaluate its performance with
their target applications.

E. Profiling

Through SECDA-LLM, we provide two types of profiling:
simulation profiling and execution time profiling. The profiler
module shown in figure 2 highlights how the profiling interacts
with both the accelerator design and driver. Additionally, we
are able to leverage any additional profiling tools enabled by
the llama.cpp project.

1) Simulation profiling: End-to-end SystemC simulation
can be used to quickly evaluate the potential performance
impact of changes to the accelerator design’s hardware and
software components and verify the implementation’s cor-
rectness. To profile the end-to-end simulation, the developer
typically needs to add additional profiling code to keep track of
hardware and software metrics throughout the end-to-end LLM
inference. The profiler module provided within SECDA-LLM
enables the quick and easy method to set up capture points
to profile from the accelerator. The capture points can record
different metrics of the accelerator and hardware submodules.
Metrics include clock cycle counts and the dynamic utilization
of processing elements and accelerator buffers.

2) Execution profiling: During the hardware evaluation,
SECDA profiling provides execution time for the custom
driver and accelerator. This type of profiling helps the designer



understand the performance bottlenecks caused by driver-
accelerator interactions. For instance, a designer may opt to
profile time spent: i) Sending input data; ii) Waiting for the
accelerator to execute operations; iii) Unpacking output data
received from the accelerator. The analysis of these detailed
execution time breakdowns can motivate both accelerator and
driver design choices. Additionally, execution profiling can be
used during a simulation run to profile driver execution times,
which can be combined with SystemC-reported simulation
times for the accelerator. This would estimate end-to-end
execution time in terms of both CPU and accelerator.

IV. CASE STUDY

To demonstrate our SECDA-LLM platform and how it
provides a quick and efficient design flow for developing LLM
accelerators for edge devices using the SECDA methodology,
we develop a new custom FPGA-based accelerator for block
floating point (BFP) quantized LLM inference.

A. Target Problem
For our case study, we target the MatMul operations for

acceleration as they are the most computationally expensive
in LLMs. Specifically, we accelerate the dot product kernel
for BFP quantized MatMul. For our design, we planned to
accelerate the GGML’s vec_dot_Q3_K_Q8_K kernel, which
is the core computation within BFP quantized MatMul; this
kernel uses 3-bit and 8-bit weight and input BFP quantization,
respectively.

Both weights and inputs are stored in what is called "super-
blocks" (SBs); these SBs are critical in maintaining LLM ac-
curacy by adjusting mathematical scaling during computation.
With the Q3_K format used for weights, each SB can represent
256 weights (Nw), where the SB is partitioned into 16 tiles
(Ntiles) and each tile contains a scaling factor (6-bits) and 16
weights (3-bits); additionally, each SB has one super-scaling
factor (16-bits)), which equates to 3.5∼ bits-per-weight.

With the Q8_K format, used for inputs, each SB contains
256 inputs (8-bits) and a single super-scaling SSF (16-bits),
which equates to 8∼ bits-per-input.

B. Accelerator Design
Our accelerator design, shown in figure 3, contains

aninstruction decoder, a data mapper, a scheduler and four
vector processing units. The instruction decoder loads and
decodes instructions from the AXI-Stream and then commu-
nicates the instruction throughout the rest of the accelerator.
The data mapper parses the incoming data stream and maps
the weight and input super blocks into their respective weight
and input buffers. Our mapping scheme enables efficient data
access, so the vector processing units can compute without
stalling the computation pipeline. The vector processing units
efficiently compute the dot product between the SB of weights
and inputs while scaling the computation according to the SB
scaling factors. The scheduler allocates SBs to each processing
unit to process. Additionally, it synchronizes and accumulates
the output data produced by the processing units and sends
the results back to the main memory using the AXI-Stream.

Data Mapper SchedulerInstruction Decoder

Weight
Buffers

Input
Buffers

Vector PU1 Vector PU3

Vector PU4Vector PU2

AXI-Stream

Fig. 3: Overview of our block floating point quantized
accelerator design for GGML’s vec_dot_Q3_K_Q8_K kernel.

C. Evaluation

We evaluate our accelerator design on the PYNQ-Z1
board [14], which contains a Xilinx Z020 edge FPGA and
a 650MHz dual-core ARM Cortex-A9 CPU. We evaluate
the TinyLlama model [13] with 1.1B parameters trained on
the Guanaco dataset [25]. This model contains various BFP
quantization levels, but most layers are quantized to Q3_K.
Note that with llama.cpp you can apply different levels of
quantization to reduce model size as required.

For our experiments, we use the llama.cpp project’s ‘main’
program cross-compiled for our target CPU architecture,
ARMv7a, with Neon vector instructions enabled alongside our
accelerator driver. We execute the TinyLlama model (460 MB)
utilizing our FPGA-mapped accelerator to obtain an initial
speed of 20 seconds per token (∼27 seconds per word). While
this performance is just on par with the CPU for now, running
TinyLlama on such a resource-constrained device was not
possible a few months ago, and we expect to improve it in
the future. With SECDA-LLM, we were able to implement,
integrate and evaluate a new design quickly

V. CONCLUSION

We introduced SECDA-LLM, a novel platform that simpli-
fies the creation of new FPGA-based hardware accelerators
for edge LLM inference using the hardware/software co-
design SECDA methodology within llama.cpp. SECDA-LLM
removes the initial setup within the llama.cpp framework
and tools to streamline accelerator design development. By
integrating the SECDA tools with llama.cpp, developers can
effectively co-design new accelerators for LLMs with ease
using the SECDA design flows.

Our approach using the SECDA methodology reduces de-
velopment costs by minimizing synthesis iterations and re-
placing them with simulation iterations using SystemC for
fine-grained benchmarking and co-verification. Furthermore,
designs can be directly deployed onto FPGAs from sim-
ulations, eliminating the need for re-implementation. As a
case study, we presented a quantized MatMul-based acceler-
ator design that optimizes LLM inference for the TinyLlama
model. Future work will expand SECDA-LLM into an open-
source platform for collaborative development and continuous
improvement of LLMs’ performance on edge devices.
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