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Abstract—The KV cache in the current LLM serving system
is mainly used for accelerating the processing of a request.
After the response is generated, the KV cache is aggressively
deleted. However, the KV cache can be reused across the requests
in some scenarios such as virtual assistants and multi-turn
conversations, which can dramatically reduce the computation
cost and improve the serving latency. Caching the historical
tokens raises substantial memory requirements. Further, in the
existing serving system, the request scheduler and KV cache are
treated separately and independently. However, they are tightly
coupled together. a CaR is a multi-tier cache system to enable
the KV cache reuse and share across the requests. Instead of
using DRAM, CaR leverages CXL (Compute Express Link) as the
external memory with the GPU-CXL direct data transfers, which
can avoid the bandwidth contention and interference caused by
the tasks running on the CPU. To wisely use the fast-tier HBM, we
co-design the KV cache manager and scheduler to cooperate with
the request scheduling and token placement across the tiers. To
hide the reload time, CaR designs a pipeline prefetcher to overlap
the communication and computation. Further, CaR proposes a
quality-aware sparsification algorithm to compress the KV cache
in each layer with a heterogeneous manner. It not only reduces
the data transfer size but also reduces the KV cache size. To
remove the data offload from a request’s critical path, we design
the asynchronous offload engine to swap out the data from HBM
to CXL in the background. Our experiment shows that CaR can
reduce TTFT by about 30%, especially in long context scenarios,
where TTFT of OPT-13B is reduced by more than 60%.

I. INTRODUCTION

Large Language Models (LLMs) such as GPT-3 [5],
OPT [36] and Llama [31] bring a groundbreaking shift with the
generative capabilities [15], [18], [32]. Following this success,
we have seen a surge in LLM-based serving systems like
ChatGPT, Copilot, etc. These LLM serving systems usually
face a large number of users and are expected to provide low
latency and high throughput [2], [6], [14], [25], [26], [34]. A
request will be processed through the prefill and decode stages.
A token generation in the decode stage depends on all of the
previous tokens in the request. To avoid recomputation, the
existing systems typically leverage the KV cache to accelerate
the processing by storing the previous tokens in a request [18].
The KV cache takes a substantial HBM space in the GPU.

To limit the memory usage of the KV cache, the current
LLM inference systems directly discard it once the request
is completed [3], [15], [18], [23], [28], [41]. However, the
KV cache can be reused and shared across the requests [39].
By reusing the KV cache from the previous requests, the
expensive computation in the prefill stage can be avoided and
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Fig. 1: The compare of prefilling latency(TTFT) and end-to-
end latency(TTET).

substantially reduce the latency, which will be more beneficial
for long prompts. As shown in Figure 1, the prefill latency
dramatically increases as the length grows.

To accommodate the historical KV cache, especially for the
long prompt [4], [8], [12], we have to leverage the external
memory [19] and wisely manage the token placement across
the tiering memory. However, it will bring several challenges:
1) where to place the KV cache? 2) How to limit the data
transfer overhead? 3) When should kick off the data transfers?

To address the above challenges, we propose a multi-
tier cache system called CaR, which can wisely manage the
historical prompts to reuse the KV cache across the requests
and efficiently migrate the data across the fast-tier HBM
and slow-tier CXL [17], [30], [35]. From our preliminary
results, reloading the KV cache from the slow-tier memory
to HBM can improve the prefill latency by 30% rather than
directly recomputing the tokens, which consumes a lot of GPU
computation resources. We believe the latency can be greatly
improved with our proposed techniques and solutions. Our
contributions are:

• We identify the main sources of latency when processing
long prompts and the major design defect in existing
LLM serving systems.

• We build a multi-tier KV cache system, designated as
CaR, which utilizes a modern CXL device for external
memory. The system enables direct data transfer between
the GPU HBM and CXL, thereby avoiding interference
from tasks running on the CPU.

• We co-design the scheduler and cache management sys-
tem, encompassing techniques such as cache replacement
and prefetching, to achieve high throughput.

• We propose an improved algorithm for compressing the
KV cache in each layer in a heterogeneous manner.
This algorithm can reduce the KV cache size, thereby
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mitigating storage stress and improving data transmission
from the CXL to the GPU.

II. BACKGROUND AND MOTIVATION

A. Generative LLM Inference

Generative LLM inference comprises two phases [1], [16],
[24], [32]: prefill and decoding. In the prefill phase, LLM mod-
els compute all input tokens in a single pass. Subsequently,
in the decode phase, LLM models utilize previous tokens,
including both the prompt and newly generated ones, as input
to generate the subsequent output token. Consequently, the
decode phase unfolds iteratively, processing one token at a
time until either the total number of generated tokens reaches
the predefined maximum or the special EOS token is produced.

When generating a new token, all KV tensors of preceding
tokens in that sequence are required for computing self-
attention. The length of the sequence quadratically amplifies
the size of the KV tensors, thereby increasing execution time.
To alleviate this quadratic overhead in LLM inference, the
Key and Value tensors are typically cached in GPUs for
reuse in subsequent generation steps, a practice known as KV
caching [9]–[11], [21], [29], [33].

B. Opportunities and Challenges

The KV cache in the existing LLM serving system primarily
accelerates processing within a request. Unfortunately, it’s
aggressively discarded once the request concludes. However,
there are scenarios where the KV cache can be reused [9].
For instance, in a virtual assistant system, the same request
may originate from different users. In ChatGPT, users engage
in multi-round conversations with dependent requests and
responses. If we intelligently manage historical tokens and
enable sharing of the KV cache across requests, we can sig-
nificantly optimize the time-consuming and compute-intensive
prefill processing, particularly for long prompt requests [20].

To assess the prefill cost within the overall serving time
for a request, we measure both the Time to First Token
(TTFT) during the prefill phase and the Time to End Token
(TTET) during the decoding phase, leveraging data from the
ShareGPT and LongAlign datasets. It’s notable that as the
prompt length increases, the TTFT experiences a significant
surge, as illustrated in Figure 1, thus emerging as the primary
processing cost. Given the prevalence of lengthy prompts in
complex tasks, there’s a pressing need to optimize performance
within the prefill stage of the LLM serving system. Our prelim-
inary experiments, detailed in Section IV, focus on evaluating
the benefits of cache reuse instead of simply recomputing
everything in the prefill stage. These experiments underscore
the promising potential of cache reuse across requests as a
strategy for performance optimization.

However, storing the historical KV cache requires a signifi-
cant amount of memory space [17]. For instance, a request
containing 2K tokens can occupy approximately 2.6GB of
KV cache space with the OPT 30B model. Considering
that the model parameters in OPT 30B already consume
56GB of memory space, it becomes apparent that a system

equipped with 4 A100-40GB GPUs can only accommodate
40 active requests with 2K tokens each, severely limiting
system throughput. To address this limitation, leveraging ex-
ternal storage space becomes imperative. The emergence of a
new external memory device - CXL - presents a promising
opportunity to expand memory space beyond the GPU HBM.
CXL facilitates direct migration of the KV cache between
the CXL and GPU through GPU-direct. However, in a multi-
tier KV cache system characterized by heterogeneous speeds,
several significant challenges are discussed below.

Where to place the data across the tiers?
The HBM on GPUs is very expensive while extremely

performant. CXL is slower than HBM, however, it provides
much larger capacities. It is not trivial to wisely manage the
data placement and replacement across the tiers, and then
efficiently use the HBM capacity and improve the fast-tier
hit ratio. The KV cache size for a request varies a lot and
incurs different migration costs. This is different from the
page replacement in the operating system, which is typically
faced with a fixed normal or huge page size and has the
same migration cost. How can we apply these kinds of unique
characteristics to cache replacement policy design other than
the factors of access frequency and access time?

How to limit the migration overhead across the tiers?
The data in the CXL device is required to reload into HBM

for use. We want to avoid the GPU stall waiting for the
data to be loaded. This not only adds to the latency but also
incurs low GPU utilization. Although CXL 3.0 can support
64 GB/s bandwidth, the access speed still much lags behind
the GPU’s processing capability. How can we allow the GPU
to get the KV cache data in on time from the CXL layer by
controlling the data migration time and data size? A request
keeps generating new tokens to be saved into the KV cache.
To avoid the fast-tier becoming full and then blocking the
request’s continuous processing, how should we do the offload
to make the available HBM space and avoid the interruption
while the GPU is busy with the request processing?

When to migrate the data across the tiers?
When reloading the data into HBM is not trivial. Reloading

too early before the next request starts to be used can reduce
HBM usage efficiency because the data has to wait until a
related request gets scheduled. Reloading too late impacts a
request’s serving time because the request has to be temporar-
ily suspended until the data is ready inside the HBM. The
request scheduler determines what requests will form a batch
to be served on the GPU. There is a tight relationship between
the scheduler and the reload engine. How to co-design the
cache manager and the scheduler to optimize request serving
time and data usage time, and then reduce the data idle time
(sitting in the HBM and waiting for to be used) and request
suspend time (waiting for data to be loaded into HBM)?

III. SYSTEM DESIGN

A. Overview

In this paper, we introduce CaR, a multi-tier cache system to
enable historical KV cache reusing across requests, instead of
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Fig. 2: The System Architecture of CaR

discarding them once the decoding is finished. CaR maintains
a cache table to record whether the KV cache of the prompts is
stored inside HBM or CXL-based external memory. If a new
request has a cache hit by looking up the table, the KV cache
can be directly retrieved from the memory instead of going
through the time-costly and compute-costly recomputation. In
this way, CaR can significantly reduce the prefill latency and
GPU computation consumption, improving GPU throughput.

We show CaR’s architecture with the modules highlighted
in figure 2. Instead of treating memory manager and scheduler
separately in the traditional system, CaR co-designs scheduler
and cache manager due to the tightly coupled relationships.
Scheduler feeds the requests’ information going to run on
GPU to the cache manager. The score-based cache policy
determines what data should be offloaded from the HBM
to CXL and reloaded from CXL to HBM. The pipelined
load engine reloads the required KV cache layer by layer to
overlap the migration and GPU execution. The asynchronous
offload engine runs in the background to mask the data
transfer contention with the users’ requests. The quality-aware
sparsification module further reduces the data transfer size and
KV cache memory consumption.

B. Co-design of Scheduler and Cache Management

1) Scheduler: As shown in Figure 3, the scheduler employs
a priority queue to determine the order of execution once
the GPU becomes available. To increase the system’s overall
throughput, we categorize requests into three groups based on
the size of the KV cache to be transmitted from the CXL to
the GPU, and assign a priority to each group accordingly:

• Requests that can reuse the KV cache already present in
the HBM are given the highest priority.

• Requests that do not involve any historical data follow,
with the second-highest priority.

• Requests falling outside of these two scenarios are as-
signed the lowest priority.

It should be noted that requests capable of partially utilizing
the KV cache from the CXL are assigned a lower priority
than those with no cache at all. This is because the absence
of cache in the latter case avoids the need for data transfer,
thereby allowing more time for subsequent data movement.
Additionally, this approach prevents requests that can only
partially use the KV cache from being prioritized over those

New Coming Requests

Replacement 
Policy Prefetcher

Shuffled Window

NodeID Addr Valid_in_GPU Size Score

Cache table

Fig. 3: The Co-design of Scheduler and Cache Manager

with no available cache, avoiding the risk of both types of
requests entering a waiting state due to untimely transfers,
which would result in wasted GPU time.

While this approach ensures minimal transmission latency,
the conventional priority queue may result in certain low-
priority requests waiting for extended periods before execu-
tion. Another issue arises from the constantly changing queue,
which can confuse the prefetcher. To address these challenges,
we maintain a fixed-size window at the front of the queue,
known as the Shuffled Window. This ensures that all requests
are executed after an acceptable waiting time and provides
ample opportunities for the prefetcher to fetch the required
KV cache in a timely manner.

To facilitate seamless collaboration between the scheduler
and the cache management module, a cache table has been
meticulously implemented to save pertinent metadata. The
NodeID field within each entry acts as a unique identifier
for the KV cache node. The Addr field specifies the memory
address of the KV cache node, pinpointing its location whether
in the HBM or CXL-based external memory. The Size field
provides a clear indication of the memory size allocated to the
current KV cache node. To track the presence of KV cache
nodes within the HBM, the Valid in GPU field is utilized. If
a KV cache node is currently resident in HBM, this field is
set to True. Lastly, the Score field captures the importance
score assigned to each KV cache node, which is instrumental
in guiding the cache’s replacement policy.

2) Prefetcher: Within the Shuffled Window, for each re-
quest, the scheduler initiates by fetching the NodeID from
memory, using this identifier to look up the corresponding
entry in the cache table. If an entry’s Addr is valid and the
Valid in GPU status is False, it signifies that the KV cache
node is currently residing on the CXL and is poised for
forthcoming reuse. In such instances, the scheduler seamlessly
relays the Addr and Size details to the prefetcher.

Through the method detailed in [40], we utilize the LLM
model to predict the output sequence length and calculate
TPOP (Time Per Output Token) dynamically. We then pass
this information to the prefetcher. The prefetcher sets a timer
for each request to monitor its progress. It decides when
to prefetch by comparing the transmission latency with the
GPU’s service time for the next request. Periodically, the
prefetcher decides whether to fetch based on the following
formula’s outcome:

fetch(t) = Imin0≤i≤N{TPOP×leni−(t−timeri)}≤ SIZE
bandwidth

(t)
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Fig. 4: Then sparsity rate of each layer in the LLM model.

Here, N represents the total number of requests currently
being handled by the GPU, t denotes the current time, leni

is the predicted output length for request i, and SIZE is the
size of the KV cache required to be fetched.

3) Cache Replacement Policy: We propose a cache re-
placement policy designed to evict KV cache nodes from
HBM when it reaches full capacity. Our policy targets the KV
cache node with the smallest Score for eviction. The scheduler
updates the Score according to the following rules

• When a request enters the Shuffled Window, the Score is
increased by 1.

• when a request is sent to the GPU for inference, the Score
is further increase by 1.

• when a request completes its autoregressive generation,
the Score is decreased by 2.

C. Efficient Data Transmission Module

1) Layer-wise Pipeline Loading: The inference process of
LLM models on GPUs is performed layer by layer. We adopt a
pipeline loading engine, allows loading the KV cache needed
by subsequence layers while the GPU execute prefilling or
decoding processes of first layer. By doing this, the KV cache
loading time is overlaped with the computation time.

2) Asynchronous Data Offloading: To eliminate the offload-
ing overhead from the request’s critical path, we introduce
an asynchronous data offloading mechanism to support active
data offloading. Once the utilization of HBM exceeds 90%,
the offloader begins actively offloading the KV cache node
based on the Policy’s Score. The entire data offloading process
is performed asynchronously. When the offloading engine
initiates an offloading task, a success signal is sent to CaR,
enabling the GPU to continue executing the LLM inference
or prefetching required KV cache data.

D. Quality-aware Compression

As the size of the KV cache increases linearly when the
token numbers increase, long contexts result in high transmis-
sion overhead when being reloaded. Data compression offers a
viable solution to mitigate this issue. However, the sparsity of
the attention score matrix varies across different layers [37].
As shown in Figure 4, if we consider elements as zeros while
they fall below 1% of the row-wise maximum value, the spar-
sity in the first layer is approximately 60%, then it gradually
increases to about 95%. Based on this observation. We employ
a quality-aware compression strategy to adaptively control the
compression ratio of each layer. Maximize the overall KV

(a) OPT-6.7B (b) OPT-13B

(c) OPT-30B (d) Llama-2-7b-longlora

Fig. 5: The latency comparison of recompute and reload.

cache compression rate while ensuring accuracy. Upon loading
a new LLM model into CaR, the system utilizes predefined
batch prompts as input to execute inference and obtain the
sparsity data of each layer. In the subsequent LLM inference
process, CaR dynamically determines the compression ratio
of each layer based on the acquired sparsity data. It utilizes
the attention score matrix’s scores to discard the KV cache
corresponding to tokens with lower scores.

IV. EVALUATION

In this section, we evaluate CaR using different LLM mod-
els such as finetuned OPT [36] 6.7B, 13B, 30B, and Llama-
2 longlora [7] 7B, 13B. We utilize the following datasets:
ShareGPT [27], [38], Longalign [13], and WikiText [22].

We implemented CaR based on vLLM [18] and deployed
it on a system with 8 NVIDIA A100-40GB GPUs, 128 GB
DRAM, and 10TB CXL disks.

A. Recomputation vs KV cache Sharing

We assess the latency of various LLM models across
different request lengths,as shown in Figure 5. Our preliminary
results show that leveraging stored KV cache for reuse yields
considerable improvements over recomputation. the KV cache
reuse demonstrates the potential to reduce TTFT by 30% in
scenarios with long context. And with OPT-13B, this reduction
even exceeds 60%. Although the latency of reloading remains
significant, the delay in the critical path can be further reduced
with the use of our designed prefetcher.

V. CONCLUSION

This Paper proposes CaR, a multi-tier cache system to
support the reuse and sharing of the KV cache across the
requests. CaR achieves a significant reduction in the recom-
putation overhead of the KV cache in LLMs. Our preliminary
experiment shows that CaR can reduce TTFT by about 30%,
especially in long context scenarios, where TTFT of OPT-13B
is reduced by more than 60%.
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“Hydragen: High-throughput llm inference with shared prefixes,” arXiv
preprint arXiv:2402.05099, 2024.

[17] B. Kim, S. Cha, S. Park, J. Lee, S. Lee, S.-h. Kang, J. So, K. Kim,
J. Jung, J.-G. Lee et al., “The breakthrough memory solutions for
improved performance on llm inference,” IEEE Micro, 2024.

[18] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the
29th Symposium on Operating Systems Principles, ser. SOSP ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
611–626. [Online]. Available: https://doi.org/10.1145/3600006.3613165

[19] Y. Lee, J. Chung, and M. Rhu, “Smartsage: training large-scale graph
neural networks using in-storage processing architectures,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 932–945.

[20] D. Li, R. Shao, A. Xie, Y. Sheng, L. Zheng, J. Gonzalez, I. Stoica,
X. Ma, and H. Zhang, “How long can context length of open-source
llms truly promise?” in NeurIPS 2023 Workshop on Instruction Tuning
and Instruction Following, 2023.

[21] B. Lin, T. Peng, C. Zhang, M. Sun, L. Li, H. Zhao, W. Xiao,
Q. Xu, X. Qiu, S. Li et al., “Infinite-llm: Efficient llm service for
long context with distattention and distributed kvcache,” arXiv preprint
arXiv:2401.02669, 2024.

[22] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” 2016.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[24] P. Patel, E. Choukse, C. Zhang, Íñigo Goiri, A. Shah, S. Maleki, and
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